
Design Patterns

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

SEOC2 Spring 2005: Design Patterns 1



Design Patterns

A design pattern is a standardized solution to a problem

commonly encountered during object-oriented software

development (Gamma et al. 1995).

A pattern is not a piece of reusable code, but an overall

approach that has proven to be useful in several different

systems already.

SEOC2 Spring 2005: Design Patterns 2



Contents of a Design Pattern

Design patterns usually include:

• A pattern name

• A statement of the problem solved by the pattern

• A description of the solution

• A list of advantages and liabilities

(good and bad consequences)

SEOC2 Spring 2005: Design Patterns 3



Design Patterns and Large-Scale
Development

For a large team, design patterns are useful in creating a

shared vocabulary.

First, everyone agrees on a standard reference text

(or set of them).

Informal discussions, class naming, etc. can then use the

pattern names.

Large groups can develop and name their own patterns.

SEOC2 Spring 2005: Design Patterns 4



Design Pattern Examples
Creational Patterns:

• E.g. Abstract Factory, Factory Method

Structural Patterns:

• Composite
• Proxy

Behavioral Patterns:

• E.g. Command, Visitor

These are from Gamma et al. (1995), but there are many

other pattern collections.

SEOC2 Spring 2005: Design Patterns 5



Composite: Pattern

aRectangleaLineaPicture

aPicture

aRectangleaLineaText

Composes objects into tree structures to represent

part-whole hierarchies.

Lets clients treat individual objects and compositions of

objects uniformly.

SEOC2 Spring 2005: Design Patterns 6



Composite: Problem

• User wants to be able to treat groups of things as a

unit

• Surrounding code would get complex if it were always

conditional on whether an object was a group or a

primitive

• Want to support hierarchical containers of containers

SEOC2 Spring 2005: Design Patterns 7



Composite: Solution

Three classes:

• Component: Shared interface between all, some

shared implementation

• Leaf: A primitive, implemented directly

• Composite: forall children Components, do operation

SEOC2 Spring 2005: Design Patterns 8



Composite: Example

aRectangleaLineaPicture

aPicture

aRectangleaLineaText

SEOC2 Spring 2005: Design Patterns 9



Composite: Advantages

• Simple support for arbitrarily complex hierarchies

• Clients can be simple — don’t need to know about

composition

• New Composite and Leaf classes can be introduced

without changing Component

SEOC2 Spring 2005: Design Patterns 10



Composite: Liabilities

• Hard for client to predict/restrict what components

might be encountered

• Hard to test that client works for all components

• Often need to define operations on Components that

make sense only for some Component types,

e.g. Composites

SEOC2 Spring 2005: Design Patterns 11



Summary

• Many other patterns available

• Design patterns help provide a library of solutions to

common OO problems

• Usually low level, but act as a vocabulary for a large

team

• Important to agree on definitions, apply consistently

SEOC2 Spring 2005: Design Patterns 12



Note: Due Dates

The web site has been updated with the due dates for

assessed coursework:

1. Handed out 21 Jan 2005, due 07 Feb 2005

2. Handed out 04 Feb 2005, due 21 Feb 2005

3. Handed out 01 Mar 2005, due 15 Mar 2005

All three are weighted equally. In place of Assignment 3,

MSc students will do a literature survey due on the same

day as Assignment 3. There is a break after Assignment 2

to give undergraduate students time for their projects.

SEOC2 Spring 2005: Design Patterns 13



References

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Pat-

terns: Elements of Reusable Object-Oriented Software. Reading,

MA: Addison-Wesley.

SEOC2 Spring 2005: Design Patterns 13


