
Lessons from Assignment 1

Dr. James A. Bednar
jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar

SEOC2 Spring 2005: Assignment 1 1

Users do not write perf ect
“user stories” by default

• Drawing the use case diagrams requires
understanding what the user wants to do.

• The original wish list was not a list of use cases! It has
to be substantially reorganized, grouping similar items
together and splitting others, to form a use case model.

• Many of the use cases that should be part of the
model were not ever mentioned explicitly by the user,
but can be inferred.

• Developing a use case model is not the same as just
drawing pictures from the user’s wish list.

SEOC2 Spring 2005: Assignment 1 2

User stories may be implicit
• Some of the wish list items are very clearly user stories.

• Many others consist of statements that e.g. the
program should “have” something.

• Even though apparently expressed like a
non-functional requirement, the only way the user
would care that a program “has” such an item is if he
or she can access it in some way.

• Thus such statements should be interpreted as sets of
implied user stories (displaying, printing, etc.) that can
be offered by a program having that item.

• Users need to be coaxed into providing user stories –
it’s an iterative process.

SEOC2 Spring 2005: Assignment 1 3

Danger: Customer techno-speak

• Be very afraid when a non-technical user uses words

that have a specific technical meaning in CS or SE,

e.g. “database” or “model”.

• User very often is using the words non-technically, i.e.,

literally.

• E.g. the ParentMagic user thinks of a database only in

user terms: a place where data is stored that she can

access later. She has no idea about all the CS

implications of that term, just how she can use e.g.

imdb.com.
SEOC2 Spring 2005: Assignment 1 4

The customer is always right

• Even though the customer has no idea what is

feasible, or how much work it would be to implement,

there is always a reason for a request, even if not

expressed well.

• E.g. never tell the customer that he or she was wrong

to want a certain feature; just say why implementing it

would be difficult, time-consuming, or would preclude

other more important features.

• User can then decide what is really crucial to keep.

SEOC2 Spring 2005: Assignment 1 5

Dealing with impractical requests

• Users often want apparently unreasonable things, like
having the program learn from them and “act
reasonably.”

• Need to explain why that very reasonable goal is
usually infeasible, because e.g. the current state of
technology is not good enough to provide anything but
annoyance.

• Features like unbidden popups may sound good, but
would probably be very annoying – should gently
explain this at first, and anticipate many iterations of
tweaking later to make it useful (big argument in favor
of XP approach!).

SEOC2 Spring 2005: Assignment 1 6

Data from 30 books
• Typing and scanning in the data from 30 books would

take months or years, not 3 days as some people stated!

• Before even starting such a project, would need to
obtain a license to use the data. That’s a huge barrier
to shipping these features in 30 days.

• Even though finding the books and arranging the
licenses is not programming, it’s still a huge
component of the project.

• For this particular application, would probably need to
hire at least one expert (doctor, etc.) to validate your
information, and may even need a lawyer.

SEOC2 Spring 2005: Assignment 1 7

Should this code be written at all?

• Most of the things proposed in this project have been
done dozens or thousands of times before, just not
specifically for parents.

• Estimated time and effort depends crucially on how
much reuse was proposed.

• Should acknowledge how ParentMagic could interface
with external programs like contact managers, photo
album software, DBMSs, etc.

• Actual functionality implemented specifically for
ParentMagic should be small.

SEOC2 Spring 2005: Assignment 1 8

Taking the user’s perspective
• The email to the customer was mostly an exercise in

taking the user’s perspective.

• Users, especially of consumer-oriented software such

as this, require a vastly different approach language

than do other developers.

• User wants to know what the software will do for them,

not the “functionality” it will provide.

• The user wish list specifically labeled some features

as important – it was absolutely crucial to address

those, whether implementing them or not.

SEOC2 Spring 2005: Assignment 1 9

Most common email errors
• Omitting salutation, conclusion, paragraph breaks —

emails are nearly unreadable without those

• Rudeness — why SW developers are normally kept

away from the customers

• Too much info – customers get overwhelmed easily

• Jargon – must be in customer’s language, not

developer’s

SEOC2 Spring 2005: Assignment 1 10

Bad example: Rude
Dear User,

We have reviewed your requirements list for Parent Magic. This is a huge

project, and many of these requirements are not practical or or even

possible for us to address. Here we will focus on three aspects of the

software that can at least partially be achieved.

The first feature is a pop-up box that will appear from time to time on your

screen and ask whether there’s anything new to report about your baby.

It will be very simple, since you did not specify what types of things you

would want to record. . . .

We will be asking for your input at different stages of the project. If you

have any questions or concerns, you are welcome to complain.

Sincerely, The Programmer

SEOC2 Spring 2005: Assignment 1 11

Bad example: Jargon
Dear User,

Having examined the user requirements document for Parent Magic, we

are very excited to be working on this exciting new project, and feedback

from end users will be invaluable during each iteration and release cycle!

With that in mind, please provide feedback on the following summary of

our design documents for the first end-user deliverable of Parent Magic.

Since our goal is to ship a beta release within one month, we have

chosen to focus initially on three core functionalities. We’re starting with

features which seem highest priority, yet can rapidly be prototyped and

deployed. Other features will be added, and existing features will be

modified, according to user feedback, with each successive release. . . .

SEOC2 Spring 2005: Assignment 1 12

Summary

• It takes work to make user wishes coherent and
understandable.

• Technical language from customers is likely to be
used differently than you expect.

• Taking the user’s perspective is difficult, but crucial for
writing successful code.

• Treat your customers with respect; they know the
domain better than you do.

• Always consider whether the code should be written
at all, before you start!

SEOC2 Spring 2005: Assignment 1 13

