Software Measurement I

We can’t accurately measure software., vet we
b}

must have measures if we are to understand

large-scale design.

e What are the issues?
Which measures are appropriate to them?
How do we identify and prioritise issues?
What should be in a measurement plan?
How severe are our limitations?

How do we use indicators and estimators?




Why Measure? I

In traditional, structured lifecycles we want to:

e Assess and manage risk.

e Trade design decisions against others.
e Track progress.
e Justify objectives.

but software resists measurement.




‘Issues for Measurement'

Schedule : Is it on time?

Cost : Can we afford to finish?
Growth : Will it scale?

Quality : Is it well made?

Ability : How good are we at design?

Technology : Is the technology viable?

These interact (e.g. ability — cost — shedule
— quality — growth).




Issue Categories (1): Schedule'

Category Measure

Milestone Date of delivery

Work unit Component status
Requirement status
Paths tested

Problem report status

Reviews completed

Change request status




Issue Categories (2): Cost'

Category Measure

Personnel Effort
Staff experience

Staff turnover

Financial perfor- | Earned value

mance

Cost

Environment Availability dates
availability

Resource utilisation




Issue Categories (3): Growth'

Category

Measure

Product size and

stability

Lines of code

Components
Words of memory

Database size

Functional

and stability

size

Requirements

Function points

Change request workload




‘Issue Categories (4): Quality'

Category Measure

Defects Problem reports
Defect density

Failure interval

Rework Rework size

Rework effort




‘Issue Categories (5): Ability'

Category

Measure

Process matu-

rity

Capability maturity
model level

Productivity

Product size/effort

Functional size/effort




Issue Categories (6): Technology'

Category Measure

Performance Cycle time

Resource utilisa- | CPU utilisation

tion

I/O utilisation

Memory utilisation

Response time




‘ Identifying Issues I

Risk assessments.

Project constraints (e.g. budgets).

Leveraging technologies (e.g. COTS).

Product acceptance criteria.
External requirements.

Past projects.

10




‘ Prioritising Issues I

Probability Relative Project

of occurrence impact exposure

Aggressive 1.0 10 10

schedule
Unstable 1.0
reqs
Staff expe- 1.0
rience
Reliability 0.9
reqs

COTS per-

formance

11



Making a Measurement Plan.

Issues and measures.
Data sources.

Levels of measurement.
Aggregation structure.
Frequency of collection.
Method of access.

Communication and interfaces.

Frequency of reporting.

12



‘ Limitations (1) I

Milestones don’t measure effort, only give
critical paths.

Difficult to compare relative importance of
measures.

Incremental design requires measuring of

incomplete functions.

Important measures may be spread across

components.

Cost of design is not an indicator of

performance.

Current resource utilisation may not be
best.

Reliable historical data is hard to find.

Some software statistics are time

consuming to collect.

Some measures only apply after coding has
been done.

13




‘ Limitations (2) I

Size doesn’t map directly to functionality,

complexity or quality.

Time lag between problems and their

appearance in reports.

Changes suggested by one performance
indicator may effect others.

Often no distinction between work and

re-work.

Overall capability maturity level may not
predict performance on a specific project.

Technical performance measures often are

not as precise as they may seem.

Technical resource utilisation may only be

known after integration and testing.

14




Checking Your Data'

Are units of measure comparable (e.g. lines

of code in Ada versus Java)?

Normalisation?

What are acceptable ranges for data

values?
Can we tolerate gaps in data supplied?

When does change to values amount to

re-planning.

15




‘Indicator (1): Design Progress'

Planned

T

Actual

Number of units completing design

Project time

16



Indicator (2): Effort'

Actual

Planned

<
N
=
S
=
S
O
o,
90
S
=
2
=
i
<
~N—
%

Project time

17



Estimator: Size-Effort '

Upper 95%

—~
O
—_—
S
QO
[95]

=T}
o
—_—

-
N
=
N
=
z
i
<
N
n

Number of lines of source code

18



