
CS2 Software Engineering note 7 CS2Ah 14.10.2002

Verification & Validation

Verification is getting the system right. Validation is getting the right system.
Both things are difficult to do, and difficult to show that you have done appropri-
ately. Figure 1 depicts one way in which validation and verification is integrated
with the lifecycle of software design.

Verified architecture

Validated system

Application

Verified applicationSystem specification

Requirements

Architecture design

PRAGMATICS

Figure 1: A “V” model of software lifecycle

The raw material for validation and verification of software in lifecycles like
the one in Figure 1 is obtained from the following sources:

Requirements : Informal (normally) description of users’ needs.

Specifications : Formal/informal description of properties of the system.

Designs : Describe how the specification will be satisfied.

Implementations : Source code (normally) of the system.

Changes : Modifications to correct errors or add functionality.

Using this raw material we then attempt to satisfy a number of objectives:

Correctness : Is the system fault free?

Consistency : Does everything work in harmony?

Necessity : Are there things in it which aren’t essential?

Sufficiency : Is everything essential there?

Performance : Does it do the job well enough?

These objectives are general and it probably will not be possible to prove we
have attained them (for example it is very difficult to be sure that traditional
software is fault free). Nevertheless, they are the aspirations of validation and
verification. Why is attainment so difficult? Here are some reasons:

� Usually it is impractical to test a program on all possible inputs.

1

CS2 Software Engineering note 7 CS2Ah 14.10.2002

Inputs triggering
anomalies

Input test data

System

Outputs signalling
defects

Output test results

Figure 2: A black box component

� Even if we can enumerate the inputs, it may be impractical to test all exe-
cution paths.

� Proofs of equivalence between programs may be easier, but

� that’s not the same as proving absolute correctness.

0.1 Black-box Testing

Suppose you have a software component that is too complex, or obscure to anal-
yse by looking at its internal structure - it is a “black box’. You do, however,
have some specification of what the component is supposed to do. How, then, do
we choose appropriate inputs for testing the component thoroughly? One way is
to guess what’s inside the box, then form equivalence partitions for inputs. The
aim is to isolate a subset of the possible inputs that is just sufficient to trigger
all those outputs signaling defects in the component (a concept illustrated by
Figure 2).

Equivalence partitioning relies on the assumption that we can separate inputs
into sets which will produce similar system behaviour. Then we methodically
choose test cases from each partition. For instance, one such method is to
choose cases from midpoint (typical) and boundary (atypical) of each partition.

For example, suppose we are testing a search algorithm which uses a lookup
key to find an element in a (non-empty) array. One partition of the test cases
for this example is between inputs which output a found element and those for
which there is no element in the array.

2

CS2 Software Engineering note 7 CS2Ah 14.10.2002

if-then-else while-loop case-split

Figure 3: Flow graph structures

0.2 White-box Testing

In black box testing we assumed that we couldn’t analyse the code in the compo-
nent “box”. In white box testing we are allowed to look at the internal structure
of code to derive test data. This is perhaps best via an example taken from Ian
Sommerville’s book “Software Engineering”. Consider the binary search routine
below.

void Binary_search (elem key, elem* T, int size,
boolean &found, int &L)

{ int bott, top, mid ;
bott = 0 ;
top = size -1 ;
L = (top + bott) / 2 ;
if (T[L] == key)

found = true ;
else

found = false ;
while (bott <= top && !found)
{

mid = top + bott / 2 ;
if (T[mid] == key)
{

found = true;
L = mid

}
else if (T[mid] < key)

bott = mid - 1 }

If we think of program in terms of flow graphs then we can produce the analy-
sis shown in Figure 4, which uses the structural components shown in Figure 3.

The paths through the flow graph in Figure 4 are:

� 1,2,3,4,12,13

� 1,2,3,5,6,11,2,12,13

� 1,2,3,5,7,8,10,11,2,12,13

� 1,2,3,5,7,9,10,11,2,12,13

3

CS2 Software Engineering note 7 CS2Ah 14.10.2002

1

2

3

4 5

6 7

8 9

10

1112

13

while bott <= top loop

if T[mid] == key then

if T[mid] < key then

if not found then

Figure 4: A flow graph for our code example

If we follow all these paths we know:

� Every statement in the routine has been executed at least once.

� Every branch has been exercised for a true/false condition.

This doesn’t, however, take data complexity into account.

0.3 Levels of Testing

Software systems usually consist of more than one component and testing of the
system has also to take into account the system lifecycle, so we have different
levels of testing:

Module testing : Local conformance to specification.

Integration testing : Checking that modules work together.

System testing : Concentrates on system rather than component capabilities.

Regression testing : Re-doing previous tests to confirm that changes haven’t
undermined functionality.

0.3.1 Making Regression Testing Affordable

It may be prohibitively costly to re-do all our earlier tests during regression test-
ing. If so, we may look for particular types of errors, e.g.:

4

CS2 Software Engineering note 7 CS2Ah 14.10.2002

� Data corruption errors (e.g. from shared data).

� Control sequencing errors (e.g. removing item from a queue before it is
placed there).

� Resource contention (e.g. deadlocks).

� Performance deficiencies.

Another heuristic for reducing the amount of re-testing is to pay more atten-
tion to re-testing older capabilities. Yet another approach is to have baseline
tests (always done), augmented with those specific to the modification.

0.3.2 Integration Strategies

The aim of integration testing is primarily to find errors in interfaces between
components, e.g.:

Import/export type/range errors : some of these can be detected by compil-
ers.

Import/export representation errors : e.g. an “elapsed time” variable exported
in milliseconds and imported as seconds.

Domain errors : when an input follows the wrong path due to incorrect control
flow.

Computation errors : input follows the right path but error in assignment
causes the wrong function to be computed.

Timing errors : in real-time systems where producer and consumer of data
work at different speeds.

There are numerous ways of organising an integration testing regime so that
it follows product development:

Top-down : Start with topmost component, simulating lower level components
with stubs. Repeat process downwards.

Bottom-up : Start with low level components and place test rigs around these.
Then replace test rigs with actual components.

Threaded : Identify major functions and test these, working out from a “back-
bone” system.

5

CS2 Software Engineering note 7 CS2Ah 14.10.2002

0.4 Building a V & V Plan

In order to coordinate the testing of your software system you will want (may be
required) to produce a plan of operation. The following are the sorts of tasks you
may include in such a plan.

� Identify V & V goals.

� Select appropriate techniques at different levels.

� Assign organisational responsibilities:

– Development organisation (prepares and executes test plans).

– Independent test organisation (runs the tests).

– Quality assurance organisation (considers effect on process/product
quality).

� Integrate your techniques within the product lifecycle.

� Put in place a system for tracking problems uncovered.

� Institute a log of test activities.

0.5 Exercise

According to MacKenzie, arguments for “good engineering” are made by deduc-
tion, induction or construction. In the context of validation and verification
this would mean that our methods involve proving required behaviours follow
from our designs (deductively); generalising required behaviours from specific in-
stances of behaviours observed in the software (inductively); or following means
of construction which are trusted from experience (in construction). Can all the
methods for validation and verification discussed above fit into this way of un-
derstanding software engineering?

6

