
CS2 Software Engineering note 5 CS2Ah 14.10.2002

Estimating Software Size

0.1 Estimating Software Size

Size isn’t everything in a software project but it does influence most things (e.g.
resources, cost) so if we don’t have an accurate prediction of size it is difficult to
plan.

In this lecture we look at:

� Different approaches to size estimation.

� Trying to tame the size problem via re-use.

0.2 Some Approaches to Size Estimation

We shall discuss three contrasting approaches:

� Through expert consensus (Wideband-Delphi).

� From standard components (Component estimating).

� From a model of function (Function point).

The first of these relies on coordinating the views of experts; the second is
based on knowledge of standard forms of design; and the third is driven by an
analysis of software function.

0.2.1 Wideband-Delphi Estimating

The Wideband-Delphi method is a way of attempting to get experts in predicting
software size to come to a consensus on their predictions - important because
experts often disagree. The method is as follows:

1. Group of experts:
�������	�	�	�
������	�	�	�
�������

.

2. Meet to discuss project.

3. Each anonymously estimates size:
� �����	�	�������������	�	���������

.

4. Each
���

gets to see all the
�

s (anonymously).

5. Stop if the estimates are sufficiently close together.

6. Otherwise, back to step 2.

1

CS2 Software Engineering note 5 CS2Ah 14.10.2002

0.2.2 Standard Component Estimating

The idea of standard component estimating is to guess the size of a software
system as a function of the size estimates of its components. These component
estimates are obtained from records of the size of previously constructed, similar
systems. The method works like this:

� Gather historical data on key components.

� Guess how many of each type you will need (� �
).

� Also guess largest (� �) and smallest (� �) extremes.

� Final estimate (
��

) is a function of � �
, � � and � � .

� For example,
������ � �! "�$#&% � �$'(� �)'�*,+

0.2.3 Function Point Estimating

Software size often has a correlation with its functionality - greater functionality
typically requiring a larger program. Function point estimating attempts to ex-
ploit this correlation by producing a size estimate based on a weighted count of
common functions of software.

Commonly used basic functions are:

Inputs : Sets of data supplied by users or other programs.

Outputs : Sets of data produced for users or other programs.

Inquiries : Means for users to interrogate the system.

Data files : Collections of records which the system modifies.

Interfaces : Files/databases shared with other systems.

A simple function point analysis produces a total estimate based on a count
of the number of instances of each basic function, weighted to account for the
different level of complexity associated with each in the type of project under
consideration. For example:

Function Count Weight Total
Inputs 8 4 32
Outputs 12 5 60
Inquiries 4 4 16
Data files 2 10 20
Interfaces 1 7 7
Total 135

2

CS2 Software Engineering note 5 CS2Ah 14.10.2002

This, of course, is quite a crude way of relating functionality and size so
there are various more elaborate forms of function point analysis, for instance
we might adjust function point total using “influence factors” to account for the
effect of project features not directly related to basic functions of the code.

0.3 Re-Use

With ground-up programming the cost of development rises sharply as software
size increases. It also continues to be true that software size tends to be, on the
whole, larger in systems year on year. Maybe we can take advantage of earlier
effort by re-using its products? Many artifacts of software design processes may
be re-used, including:

� Code
� Designs and architectures.
� Documentation.
� Tests.
� anything else which is experience.

There also are a variety of motivations for doing so:

� Saves money.
� Cumulative debugging.
� Shorter development time.
� Encourages modularity.

Obtaining benefits from re-use on a large scale has, however, proved more
difficult than one might imagine. There are a number of inhibitors, including
these:

� Big components are the most tempting and most difficult to re-use.
� Re-used components are older so may reach obsolescence sooner.
� May not be able to re-use component and documentation.
� May be hard to find the original designer if it goes wrong.
� Hard to find the right thing.
� Tempting to twist project to fit re-usable components.
� It costs to design components specifically for re-use.
� Need to consider re-use in the previous project.

3

CS2 Software Engineering note 5 CS2Ah 14.10.2002

0.4 Exercise

You know about three methods for size estimation: Wideband-Delphi, Compo-
nent estimating and Function point estimating. Discuss how you would choose
which of these to use and when.

4

