
CS2 Software Engineering note 1 CS2Ah 14.10.2002

Software Projects: Why they Fail and Why There
Are Standards

Software appears, by its nature, to be difficult to engineer on a large scale.
Nevertheless, there is an insatiable demand for sizeable, well-engineered soft-
ware despite the fact that we continue to be dogged by project failures, on small
and large projects. Many of these are due to mistakes in project management.

In this lecture we discuss some examples of project failure on a large scale,
then survey the state of current software-related engineering standards.

0.1 The Scale of the Problem

Horror stories abound of spectacularly unsuccessful projects containing a signif-
icant software component. It is difficult to be precise about how much this costs
us overall but even the individual examples of large scale failures are worrying.
Quoting from CIO Magazine Dec 1998:

� A recent Standish Group survey indicates “46 % of IT projects were over budget
and overdue and 28 % failed altogether”.

� “only 24 % of IT projects undertaken by Fortune 500 companies in 1998 will be
completed successfully.”

This problem does not appear to be localised to the private sector. Public
sector projects also go badly wrong. For example, a source in the US military
has claimed in the recent past that:

� There was one Army project that was 1 billion dollars over budget, and still had no
working system.

� 100% of all DoD projects over 1 million lines of code were delayed.

� One third of all projects were canceled before completion.

� One half of all projects cost twice as much as they were estimated to cost.

Let’s take a look at some specific examples of project failure.

0.1.1 License Registration System

In 1990 the Washington State Department of Licensing launched its License
Application Mitigation Project (LAMP): $41.8 million over 5 years to automate
the state’s vehicle registration and license renewal processes. By 1993 budget

1

CS2 Software Engineering note 1 CS2Ah 14.10.2002

was $51 million and system was expected to be obsolete when finished. In 1997
the project was canceled, about $40 million having been wasted.

Problems:

� Too big in concept with too few early deliverables.

� Split between in-house and contractor development.

� The organisation didn’t want to hear that the project was a failure.

0.1.2 Customer Database System

In 1996 a US consumer group embarked on an 18-month, $1 million project
to replace its customer database. The new system was delivered on time but
didn’t work as promised, handling routine transactions smoothly but tripping
over more complex ones. Within three weeks the database was shut down, trans-
actions were processed by hand and a new team was brought in to rebuild the
system.

Problems:

� The design team was over-optimistic in agreeing to requirements.

� Developers became fixated on deadlines, allowing errors to be ignored.

0.1.3 Customer Tracking System

In 1996 a San Francisco bank was poised to roll out an application for tracking
customer calls. Reports provided by the new system would be going directly to
the president of the bank and board of directors. An initial product demo seemed
sluggish, but telephone banking division managers were assured by the design-
ers that all was well. But the the system crashed constantly, could not support
multiple users at once and did not meet the bank’s security requirements. Af-
ter three months the project was killed; resulting in a loss of approximately
$200,000 in staff time and consulting fees.

Problems:

� The bank failed to check the quality of its contractors.

� Complicated reporting structure with no clear chain of command.

� Nobody “owned” the software.

2

CS2 Software Engineering note 1 CS2Ah 14.10.2002

0.1.4 Payroll system

The night before the launch of a new payroll system in a major US health-care
organization, project managers hit problems. During a sample run, the off-the-
shelf package began producing cheques for negative amounts, for sums larger
than the top executive’s annual take-home pay, etc.

Payroll was delivered on time for most employees but the incident damaged
the relationship between information systems and the payroll and finance de-
partments, and the programming manager resigned in disgrace.

Problems:

� The new system had not been tested under realistic conditions.

� Differences between old and new systems had not been explained (so 8.0 $
per hour was entered as 800 $ per hour).

� “A lack of clear leadership was a problem from the beginning.”

0.1.5 Distribution System

Anticipating growth, a $100 million division of a $740 million manufacturing
business earmarks $5 million for a new distribution and customer service system
to replace its old one. The project is to take a year and a half to complete. Two
years later, the CIO is sacked and a new executive brought in to save the project.
Three months later, the system breaks down altogether.

Nine months later, the CIO approached his boss, the CEO to tell him the
project is a failure. “It was kind of like telling him a relative had died,” he recalls.
“First he denied it, then he went through a grieving process, then he accepted it.
It was just so much money for a division that size to wave in the wind.”

Problems:

� Wrong direction from the start.

� Inadequate software plan.

� Nobody “owned” the software.

0.2 Software Engineering Standards

According to the IEEE Computer Society Software Engineering Standards Com-
mittee a standard can be:

3

CS2 Software Engineering note 1 CS2Ah 14.10.2002

� An object or measure of comparison that defines or represents the magni-
tude of a unit.

� A characterisation that establishes allowable tolerances or constraints for
categories of items,

� A degree or level of required excellence or attainment.

Standards relevant to software engineers are motivated by a wide variety of
concerns, including these:

Prevents idiosyncrasy : e.g. Standards for primitives in programming lan-
guages).

Repeatability : e.g. Repeating complex inspection processes.

Consensus wisdom : e.g. Software metrics.

Cross-specialisation : e.g. Software safety standards.

Customer protection : e.g. Quality assurance standards.

Professional discipline : e.g. V & V standards.

Badging : e.g. Capability Maturity Model levels.

Comparatively few software products are forced by law to comply with spe-
cific standards. Most software products have comprehensive non-warranty dis-
claimers. However:

� For particularly sensitive applications (e.g. safety critical) your software will
have to meet certain standards before purchase.

� US courts have used voluntary standards to establish a supplier’s “duty of
care”.

� Adherence to standards is a strong defence against negligence claims (ad-
missible in court in some parts of the world).

� There are instances of faults in products being traced back to faults in
standards, so

� standards writers must themselves be vigilant against malpractice suits.

Figure 1 illustrates the different levels at which software engineering stan-
dards may be constructed. The core of standards definitions are element stan-
dards, giving the key information appropriate to the standard. These, however,

4

CS2 Software Engineering note 1 CS2Ah 14.10.2002

Element standards

Principles and objectives

Overall guide

Terminology

Application guides Tools and techniques

Figure 1: Levels of software engineering standards

normally are a consequence of consensus which required agreement on princi-
ples and objectives, terminology and the overall remit of the standard. Supple-
menting the standard there may also be guides to its application and perhaps to
the tools and methods consistent with it.

A variety of organisations have been formed to construct, vet and maintain
standards documents. Among the most important of these for software engineers
are the following:

ANSI : American National Standards Institute. Does not itself make standards
but approves them.

AIAA : American Institute of Aeronautics and Astronautics (e.g. AIAA R-013-
1992 Recommended Practice for Software Reliability).

EIA : Electronic Industries Association (e.g. EIA/IS-632 Systems Engineering)

IEC : International Electrotechnical Commission (e.g. IEC 61508 Functional
Safety - Safety-Related Systems)

IEEE : Institute of Electrical and Electronics Engineers Computer Society Soft-
ware Engineering Standards Committee (e.g. IEEE Std 1228-1994 Standard
for Software Safety Plans)

ISO : International Organisation for Standardisation (e.g. ISO/IEC 2382-7:1989
Vocabulary-Part 7: Computer Programming)

If you want to consult an appropriate standard, however, the names of these
organisations don’t necessarily indicate where to look since different organisa-
tions set standards relevant to different aspects of software engineering. Some
of the relevant aspects include:

5

CS2 Software Engineering note 1 CS2Ah 14.10.2002

Computer Science Standards (e.g. ISO/IEC 8631:1989 Program Constructs
and Conventions for their Representation): Surprisingly few “pure” CS stan-
dards exist, although one could argue this is because CS is pervasive in
others.

Quality Assurance Standards (e.g. IEEE Std 1061-1992 Standard for Software
Quality Metrics Methodology): Differing views of quality standards: taking
a systems view (that good management systems yield high quality); and
taking an analytical view (that good measurement frameworks yield high
quality).

Project Management Standards (e.g. IEE Std 1058.1-1987 Standard for Soft-
ware Project Management Plans): These are concerned with how general
principles of good management are applied to specific areas of software en-
gineering.

Systems Engineering Standards (e.g. ISO/IEC WD 15288 System Life Cycle
Processes): Particular application domains develop sophisticated interac-
tions between system and software engineering, so standardising from a
systems point of view can be beneficial.

Dependability Standards (e.g. IEC 1025(1990) Fault Tree Analysis): As hard-
ware dependability has improved, software has received more attention as a
dependability risk. Dependability of software isn’t just a question of internal
measures (e.g. availability, reliability) but also broader issues (e.g. main-
tainability, system context). Dependability standards often set integrity lev-
els necessary to maintain system risks within acceptable limits.

Safety Standards (e.g. IEC 61508 Functional Safety - Safety-Related Systems):
These traditionally come out of specific industrial sectors, since safety re-
quires deep analysis of the domain as well as the technology.

Resources Standards (e.g. IEEE P1320.1 Standard Syntax and Semantics for
IDEF0): Although software engineering is in flux, it is possible to standard-
ise on some forms of resources which are used widely across applications.

Product Standards (e.g. ISO/IEC 14598 Software product evaluation): These
focus on the products of software engineering, rather than on the processes
used to obtain them. Perhaps surprisingly, product standards seem difficult
to obtain.

Process Standards (e.g. ISO/IEC 15026 System and Software Integrity Levels):
A popular focus of standardisation, partly because product standardisation
is elusive and partly because much has been gained by refining process.
Much of software engineering is in fact the study of process.

Company Guidelines (e.g. Shell UK Code of Practice: Fire and Gas Detection
and Alarm Systems for Offshore Installations): Specific companies may de-
velop their own guidelines for system/software design. These define good
practice within a company. They often conform to more general standards.

6

CS2 Software Engineering note 1 CS2Ah 14.10.2002

0.3 Exercise

Look back at each of the project failures summarised in Section 0.1. Would
any of the sorts of software related standards we discussed have helped to avoid
project failure? If so, how? If not, why not?

7

