
Reliable Agent Systems

• Why this is difficult but (maybe) important.
• Two short examples showing how a small

change in our formal view alters practice.
• Different ways of assessing reliability.

Many SE/KE technologies/methods could apply.
The issue is how they can be applied effectively.

This lecture looks more closely at reliability
of agent systems in an open environment:

Reminder: Demand v Supply
"What is particularly impressive is the way that scientists are now
undaunted by important complex phenomena...The emerging field of e-
science should transform this kind of work...One of the pilot e-science
projects is to develop a digital mammographic archive, together with an
intelligent medical decision support system for breast cancer diagnosis
and treatment....So the surgeon in the operating room will be able to pull
up a high-resolution mammogram to identify exactly where the tumour
can be found."

Tony Blair, Speech to Royal Society, 23rd May 2002

“Design and Development: Software Architecture Design…
Artificial Intelligence…NR [Not Recommended]”

IEC 61508 standard for safety-related software

Reliability for Traditional Systems

• Define the boundaries of the system.
• Identify the components within these boundaries.
• Assess the reliability of each component under the

range of operating conditions expected.
• Estimate the overall reliability as some function of

component reliabilities and their interactions.
• Use this stable reliability estimate for the system

whenever it is run.

A traditional form of reliability estimation:

Reliability for Agent Systems

• Characterisation of components via a “semantic layer”
(DAML-S, etc).

• Incremental and evolving characterisation.
• Standardisation only at interfaces between

components (protocols, ontology mappings, etc).
• Context for evaluating “truth” of information is not

always static.

The Semantic Web (and related Grid initiatives) assumes:

No boundary. No definitive measure of dependability. No
stability over time.

An Example
• It is believed to be impossible now for medical practitioners

to know all they should know.
• In some sub-disciplines (e.g. oncology) automated support is

being provided via decision support systems.
• These are now being made available as components (open

source) via Web portals.
• The legal position in doing this is unclear. There is a duty of

care in medicine. Normal medical safety arguments (“the
patient would have died anyway”) won’t work. Normal
defence in depth arguments won’t work.

• So how do we make a safety case for such systems?

Some Reliability Issues

Internal
State

Competences

Messages

Asynchronous updates
and resource limited

hence defeasible

No global control but
need reliable interaction

Matchmaking via specifications
which are not trusted

Interaction Control

An auction without social conventions…

English auctioneer

English bidder Dutch bidder

bid_at(10)offer(12)
Waiting

for
bid_at(8)

Current Standard Practice
Build into each agent:
l Its interaction strategy.
l Its algorithm for deciding how interaction

strategy translates into message passing.
l Its decision procedures.

This doesn’t scale because:
l We must predict all the interactions for each agent.
l The resulting code is complex.
l We must change it whenever the implementation

platform or communication environment changes.
l This change may have an impact on other agents.

Reliable Interaction Control
Agents must operate independently but their
interactions must be reliable. Conversation
shouldn’t require preparation by all involved.

l Solution 1: Performative languages
l Solution 2: Global controllers.
l Solution 3: Proxies.
l Solution 4: The protocol is in the message.

Basic Example

Agent a1

agent(A) ::=
hello => agent(B) then
recognised <= agent(B) then
agent(A).

agent(B) ::=
hello <= agent(A) then
recognised => agent(B).

Agent a2

agent(a1) ::=
hello => agent(a2) then
recognised <= agent(a2) then
agent(a1).

hello

General Specific

Basic Example

Agent a1

agent(A) ::=
hello => agent(B) then
recognised <= agent(B) then
agent(A).

agent(B) ::=
hello <= agent(A) then
recognised => agent(B).

Agent a2

agent(a1) ::=
hello => agent(a2) then
recognised <= agent(a2) then
agent(a1).

agent(a2) ::=
hello <= agent(a1) then
recognised => agent(a1).

hello

General Specific

Basic Example

Agent a1

agent(A) ::=
hello => agent(B) then
recognised <= agent(B) then
agent(A).

agent(B) ::=
hello <= agent(A) then
recognised => agent(B).

Agent a2

agent(a1) ::=
hello => agent(a2) then
recognised <= agent(a2) then
agent(a1).

agent(a2) ::=
hello <= agent(a1) then
recognised => agent(a1).

recognised

General Specific

Basic Example

Agent a1

agent(A) ::=
hello => agent(B) then
recognised <= agent(B) then
agent(A).

agent(B) ::=
hello <= agent(A) then
recognised => agent(B).

Agent a2

agent(a1) ::=
hello => agent(a2) then
recognised <= agent(a2) then

hello => agent(B) then
recognised <= agent(B) then
agent(A).

agent(a2) ::=
hello <= agent(a1) then
recognised => agent(a1).

recognised

General Specific

Basic Example

Agent a1

agent(A) ::=
hello => agent(B) then
recognised <= agent(B) then
agent(A).

agent(B) ::=
hello <= agent(A) then
recognised => agent(B).

Agent a3

agent(a1) ::=
hello => agent(a2) then
recognised <= agent(a2) then

hello => agent(a3) then
recognised <= agent(a3) then
agent(a1).

agent(a2) ::=
hello <= agent(a1) then
recognised => agent(a1).

General Specific

hello

Agent a2

More Complex Example

diagnostician interviewer

patient

Request diagnosis

Request interview for patient

Offer clinical information

Offer diagnosis Patient-interviewer interaction
not modelled

Interaction Protocol

agent(Scene, Type, Name) ::=
InputMessage1 <= Agent1 then
(OutputMessage1 => Agent2 par OutputMessage2 => Agent3) then
agent(NewScene, NewType, Name).

agent(referral, diagnostician, D) ::=
request(diagnosis,_) <= agent(external, patient, P) then
request(clinical_interview,_) => agent(diagnosis, interviewer, I) then
offer(clinical_information,_) <= agent(diagnosis, interviewer, I) then
offer(diagnosis, _) => agent(external, patient, P) then
agent(referral, diagnostician, D).

Reactions

agent(referral, diagnostician, _) ::
request(diagnosis,D) <= agent(external, patient, P) à

believe(diagnosis_request(P, D)).

agent(Scene, Type, Name) :: InputMessage <= Agent1 à Actions.

Proactions

agent(referral, diagnostician, _) ::
offer(diagnosis, D) => agent(external, patient, P) ß

decision(referral_decision(P), D).

agent(Scene, Type, Name) :: OutputMessage => Agent1 ß Conditions.

Separation of Concerns

• Define interaction protocol.
• Define proaction and reaction constraints.

For each form of dialogue define a protocol:

For different interaction environments:
• Build the software for transporting protocols.

For each agent:

For different agent implementation platforms:
• Build the software for en/de-coding protocols.

• Build decision procedures for pro/re-actions.

Reliability: Process

Message
transport

Message
en/de-coding

Agent
decision procs

Dialogue
protocol

Defined once per dialogue type

Built once per interaction
environment.

Built once per
implementation platform.

Built once per agent.

Reliability: Proof
Proofs of properties seem attractive.
e.g. Every time there’s a request for a referral
there will be an offer of diagnosis to the patient.

But we can prove this only with assumptions
about the agents involved (e.g. that
decision(referral_decision(P), D) always
succeeds).

Component reliability can only be determined at
deployment time so vendor has to provide a
reliability function, not static evaluation.

Reliability:Testing

How do we test specific behaviours?
One way is to simulate.

agent(referral, diagnostician, D) ::=
request(diagnosis,_) <= agent(external, patient, P) then
request(clinical_interview,_) => agent(diagnosis, interviewer, I) then
offer(clinical_information,_) <= agent(diagnosis, interviewer, I) then
offer(diagnosis, _) => agent(external, patient, P) then
agent(referral, diagnostician, D).

e.g. Every time there’s a request for a
referral there will be an offer of diagnosis to
the patient in reasonable time.

Reliability: Experimentation

How do we predict population-level behaviours?
One way is multi-agent simulation.

e.g. Can we invent a dialogue protocol which
significantly reduced mean waiting time
between presentation of symptoms and
diagnosis.

Requires a “laboratory” for rapid modelling of
large agent systems.

A “Laboratory”
Macro-level behavioural modelsMacro-level behavioural models

Institution-level specInstitution-level spec

Model checking resultsModel checking results

Model checking spec.Model checking spec.Simulation spec.Simulation spec.

Simulation resultsSimulation results

Summaries of behavioural analysisSummaries of behavioural analysis

Requirements analysisRequirements analysis

Visualisation toolsVisualisation tools

Refinement systemRefinement system

Behavioural
comparison

Behavioural
comparison

Institution translatorInstitution translator

Simulation platformSimulation platform Model checkerModel checker

Parameter
optimisation

Parameter
optimisation

