
ACM SIGSOFT Software Engineering Notes vol 23 no 3 May 1998 Page 64

Successful Software Engineering
Research

David Lorge Parnas, P.Eng.
Software Engineering Research Group

DEPARTMENT OF COMPUTING AND SOFTWARE
Faculty of Engineering

McMaster University, Hamilton, Ontario; Canada L8S 4K1

1 I n t r o d u c t i o n

Rumination about what makes research successful is a strong
indication that a researcher will not continue to do successful
research. Nonetheless, the invitation to publish a short ar-
ticle in SEN on the occasion of being honoured by receiving
SIGSOFT's "Outstanding Research Award" has led me to re-
flect on what I have done. I have been active in research on
software design for more than 35 years; perhaps this is the
time to pause and look back. I also want to look forward; I
have some concerns about the direction being taken by many
researchers in the software community and would like to offer
them my (possibly unwelcome) advice.

2 R e s e a r c h in o t h e r a r ea s o f e n g i n e e r i n g

I have the pleasure of working in a Faculty of Engineering and
often walk past bulletin boards where the work of Mechani-
cal, Chemical, and Civil Engineering colleagues is posted. As
I look at these papers, I notice a pattern. The majority of
those papers begin by describing a problem that is frequently
encountered in connection with product design or production.
They proceed to develop a model of the essential or funda-
mental parts of the problem, abstracting from facts that they
consider irrelevant, and then proceed to analyse that model.
Finally they show how the results of their analysis can be
applied to solve, or improve the solution of, the original prob-
lem. Somewhere in the paper, there is a survey of alternative
approaches, including those in the literature and those in use
in other industrial environments.

Because of my deep interest in computer science and mathe-
matics, I also get announcements and papers from those fields.
The tradition of scholarship in these fields, (and others such
as philosophy, history, literature), is quite different from that
in engineering. Outside of engineering, scholars often begin
with an analysis of the literature in their field, highlighting
work that is related to their own. Often, they identify some-
thing that is either missing or, in their opinion, wrong in the
earlier work. This allows them to explain their own approach
to the subject and to then present their new results. Some-
times, but not always, there is a section that discusses the
practical implications or applications of their work.

I can reformulate this observation to make my point more ex-
plieit. In engineering research, problems are found in current
practice, abstraction is used to identify the fundamental is-
sues, and analysis provides insight on those issues. After the
abstract models are investigated, the engineering researcher
provides some advice on how to solve the original design or
production problems. Advice to developers is the goal of the

research. In the other fields, many problems are found in the
research literature and the goal seems to be to add to that
literature. I know many exceptions to these observations, but
they are "the exceptions that prove the rule"; they stand out
because they are exceptions.

3 Is S I G S O F T c o n s i s t e n t ?

I am the second winner of the SIGSOFT award. An obvi-
ous approach is to ask what my work has in common with
that of the 1997 winner of the prize, Dr. Barry Boehm. At
first glance, the answer is "nothing". Barry Boehm addresses
questions that strike me as too hard to answer and I don ' t
see him attacking the issues that I personally view as most
pressing. Is the fact that we have both won this prize merely
a coincidence? If you look more deeply however, our work
is similar and that the common properties are the secret of
S u c c e s s .

Dr. Boehm and I have both followed the engineering pa t t e rn .
Both of us had extensive contact with industrial practice and
both set out to solve what we perceived to be the most seri-
ous problems encountered by practitioners. The fact that we
picked diferent problems is not important for this discussion.
It may be the result of the kind of industry or simply where
we were within the company. The essential point is that our
research was stimulated by what we saw in industrial practice.

4 W h i c h p a r a d i g m is fo l lowed in S o f t w a r e E n g i n e e r i n g
r e s e a r c h ?

The reason that I have chosen to write on this difficult topic is
that when I examine the literature in "Software Engineering",
I see papers that follow the paradigm of fields other than
engineering. Further, I observe referees judging papers by the
standards of non-engineering fields. Finally, I observe that
most software developers, ignore the bulk of our research.
Whereas practising engineers find things of value in research
publications, most software developers do not.

I have angered colleagues with this observation before, but
it seems to me that much of the~research published in our
conferences and journals is ignored by software developers
because it does not address issues tha t concern developers
or offer solutions that they can use. When most software
developers read, they don' t look at research literature, but
at "slick" magazines offering superficial descriptions of easy
answers. Engineering in general, and software engineering in
particular, is always difficult. Market pressures force us to t ry
to do better than those who worked before us. Easy answers
are usually not answers at all; easy answers are diversions. I
do not see solid useful advice in the most popular software
magazines. However, I cannot advise the readers of those
magazines to turn to the research journals. The authors who
write in those journals have some other audience in mind.

5 A n a n c i e n t " case s t u d y "

My first piece of successful research was the result of an in-
vitation to leave academia for a while and work with soft-
ware developers at Philips Computer Industry in Apeldoorn,
Netherlands. I went there thinking that I had the answer to

ACM SIGSOFT Software Engineering Notes vol 23 no 3 May 1998 Page 65

software development problems. Fortunately for me, the peo-
ple who shared my vision, and had invited me to Apeldoorn,
had been reassigned to another location. I found myself in
a room full of people who were neither missionaries nor re-
searchers; they were developing software. As I watched their
work, and tried to understand their discussions, I realised that
my vision (which I later discovered was shared by several other
researchers) was completely wrong. I was assuming things to
be easy that were in fact impossible. The developers' major
problems were problems that I had never considered, prob-
lems that none of my professors or colleagues thought worthy
of discussion.

It was sitting at a lunch table, listening to a frustrated discus-
sion about changing interfaces, that led me to start question-
ing the way that people throughout the industry were dividing
software into work assignments, which they called modules.
In the middle of a sandwich, I predicted that there would be
severe problems because one of my colleagues was describing
an interface by drawing a picture of a control block on a paper
napkin; I told them not to discuss the data structure because
it was very likely to change. They told management that I
was trying to obstruct progress. Two holes were punched in
the napkin and it was inserted in a binder with other design
documentation.

When it was time to integrate the software components that
were discussed during that lunch, it turned out that (1) they
were incompatible, and (2) they were very hard to change.
Several important deadlines were missed because the picture
on the napkin was no longer valid, but many people had based
their program design on that interface description.

I had been among these intelligent, hard-working people long
enough to understand their need for interface descriptions
that were complete and precise. However, having the per-
spective that sometimes comes from being only a visitor, I
saw something more. I realised that they should be using in-
terfaces that were simpler, and less likely to change, than the
data structures that were used to pass data from one program
to another. I began to realise that only a different decomposi-
tion would allow stable interfaces. It was from this experience
that the principle now known as "information hiding" evolved.

When I returned to my university position, I began informal
(not controlled) experimentation to see if my idea could work
in practice. Four widely cited papers [5,6,7,8] were the im-
mediate result; the term "information hiding" which I coined
to try to explain how my structure was derived, has since
appeared in many software engineering textbooks.

6 Lessons l e a r n e d

I see two important points in this anecdote. First, I would
never have realised the nature of the problem, unless I had
been working on that project, reviewing development docu-
ments, and sitting at that lunch table. Second, I chose n o t

to respond to the immediate needs of the developers. They
thought that their problem was simply that they did not know
how to document the interfaces; their pictures described the

format, but not the meaning of the data. Moreover, drawing
those pictures took lots of time. They never questioned the
need to draw and distribute the pictures; they never ques-
tioned organ~sing the software so that the pictures had to be
used to communicate between programmers. Everyone did it
that way!

I have known researchers who, in similar situations, wrote
programs that would draw pretty pictures of control blocks.
Such a tool would have provided symptomatic relief, would
have been welcomed by the developers; it would have been
publishable research. However, the pictures did not describe
the semantics of the control blocks, and they did not reduce ei-
ther the impact of interface changes or make interface changes
less likely. Further, if they wanted such a tool, the developers
could have built it; there was nothing that required research
training or the time to think enjoyed by most researchers.

I believe that the role of the successful engineering researcher
is to understand developers' problems, but to use the luxury
of not having to meet short-term deadlines, to look for the
underlying causes and fundamental cures rather than imme-
diate, symptomatic, relief. Developers, who must meet press-
ing market driven deadlines, do not have the time to look for
long-term solutions. That is the researcher's job.

7 S o m e h i s to r i ca l p e r s p e c t i v e

Younger researchers, who have heard about information hid-
ing or abstraction since they were first introduced to pro-
gramm~ng, may not appreciate how novel the ideas were at
the time. When I discussed the problem of software decom-
position with my academic colleagues, they were not at all
interested. One, whose work has had incredible impact over
the years, told my department head that there was no sub-
stance in the problem of modularisation and suggested that
I be fired. Another, a very senior person in Artificial Intelli-
gence, claimed that the problem of software development was
easy, would soon be solved, and was not worthy of academic
research.

In his classic, still popular, and still important, book, "The
Mythical Man Month " l , Fred Brooks referred to my proposal
as "a recipe for disaster".

When I first submitted [7] (with the title, "A New Criteria
For Dividing Systems Into Modules"), it was rejected with a
one line review that said, "Obviously Parnas doesn't know
what he's talking about because nobody does it that way." I
got the paper accepted without substantive change by point-
ing out that since my paper c]almed that the method was
new, it should not be rejected because nobody did it. Ap-
proYimately ten years later, a textbook mentioned the same
paper and said, "but Parnas only wrote down what all good
programmers were doing anyway". If I believe both of these
observers, I can conclude that the set of good programmers
was empty.

In fact, neither observation was true. I found my idea by corn-

1 The 20th anniversary edition of the book, now recognlses this zemaxk
is incorrect.

ACM SIGSOFT Software Engineering Notes vol 23 no 3 May 1998 Page 66

paring the few systems that did not have interface problems,
with many that did. I rejected empty phrases, like "beauti-
ful", '~clean", and "elegant", which had been used to describe
the better systems, and looked for a criteria that explained to
engineers (who are widely believed to have no appreciation of
beauty) what had to be done. In those days, the idea of hiding
information was considered subversive. The company that I
worked with thought that the solution to software problems
lay in standaxdising documentation in order to make all design
information accessible to everyone. My insight was obtained
by a very unacademic type of research - reading a lot of code
and reflecting on what was happening. Today, the idea seems
so obvious that I am uncomfortable talking about it, but if I
read more code, I see that it is still worth teaching. Even in
programs that use the latest languages and are described as
"object oriented", I find a failure to use abstractions or hide
information.

8 O p e n p r o b l e m s fo r r e s e a r c h e r s

My 1972 papers left lots of questions open for other re-
searchers, but very few people followed them up. Simple
minded approaches to information hiding, and simple-minded
implementations of information-hiding modules, lead to very
inefficient programs and made the ideas, though logical, seem
impractical. Research was needed on how to design inter-
faces, how to implement intermodule communication, etc. I
had raised the problem of decomposition into modules, but
there was, and is, a need for work on composing systems from
separately developed "information hiding" modules. Imple-
mentation methods that work well for modules that do not
abstract from information, do not usually work well with in-
formation hiding modules.

Research was also needed on how to apply the idea to sys-
tems with many independently changeable design decisions.
My case study had only 5. Many methods work well when
there are 5 components but not when there axe 50 or 500. Al-
though the idea of information hiding was quickly accepted by
researchers, it was not being applied by the majority of soft-
ware developers. If it had been widely applied, we would not
have the "year 2000" problem today. In other words, all that
researchers had to do was study why information hiding was
not being used and they would have found lots of interesting
and challenging problems worth investigating. In fact, most
academic and industry researchers simply assumed that the
issue was solved and returned to other issues (e.g. developing
more new languages).

9 W h o is s t u d y i n g i n s p e c t i o n m e t h o d s ?

Anyone who takes a close look would reallse that software
inspection is a major problem in many development environ-
ments. The industry badly needs methods that will help in-
spectors to proceed systematically, carefully considering all
cases in a way that provides confidence that nothing has been
overlooked. There have been influential publications on in-
spection beginning with [2], followed up by [3] and, more re-
cently, a book [4]. However, note that this work does not come
from academic researchers but from practitioner/consultants.

More important, these pragmatic publications focus on the
management/organisational aspects of inspections, and take
no advantage at all of the vast body of research literature on
mathematical methods of verification. I first became aware
of the difficulty in inspecting documents and code when at-
tempting to apply design methods to an avionics system and
we offered some useful advice in [10]. However, I became more
aware of the importance of this problem, and the continuing
dearth of research literature about it, when asked to work on
inspecting a safety-critical system [13]. Driven by an imme-
diate need, we developed an improved method (described in
[12]), but there is still a tremendous need for improved meth-
ods and for tools and I see very little academic interest in this
problem. I have seen a few other papers on the topic but noted
little substance beyond that in those cited. Mathematically
supported inspection should be far easier than automated ver-
ification, and of immediate value, but it has not a t t racted the
attention of mathematically oriented researchers.

10 W h o is t a k i n g a se r ious l o o k a t d o c u m e n t a t i o n ?

My current area of s tudy is another example of a sadly ne-
glected topic. About a decade ago, a series of informal con-
versations with software developers led me to realise just how
much time and money is lost because of the poor quality
of software maintenance documentation. Ask your favourite
software developer why a mistake was made and you are very
likely to be told that the documentation was uncleax, incom-
plete, inconsistent, or inaccurate. Programs are very precise
and sensitive to minor changes. Complete documents must
include a lot of detail and cover many different cases. Even
program descriptions that describe what programs do, not
how they do it, will be bulky and must be organised in such a
way that (a) the information that you need is easy to find and
(b) gaps and inaccuracies can be detected. Finding ways to
write precise program documentat ion that is organised for in-
formation retrieval is a tremendously fertile field with many
concrete problems for software engineering researchers who
want their work to have impact on software developers. Tha t
field is not being ploughed by verymany. In fact, the problem
is not even accepted as "real research" by the people who axe
best qualified to solve it.

My engineering education has shown me how mathematics
plays an essential role in the documentation of engineering
products. My associates and I have carefully studied much
of the "formal methods" literature and concluded that what
those papers offer is not a solution to the software documen-
tation problem. The examples that I have studied obviously
represent a great deal of careful, often creative, thought. The
specifications were certRinly difficult to write, but they will
be even harder to read. In most approaches, the reader is
expected to derive the behaviour from a subtle set of axioms
that may interact in surprising ways. In engineering mathe-
matics, the documentation of behaviour is described by for-
mulae, which the reader can evaluate simply by plugging in
the values for the case that interests them. The "engineering
approach" and the "formal methods" approach are equally
mathematical, but they require a very different kind of rea-

ACM SIGSOFT Software Engineering Notes vol 23 no 3 May 1998 Page 67

soning when you use the mathematics to find out what a
program will do.

Because we have used mathematical notation, and many re-
searchers appear not to have thought about the practical as-
pects of program documentation, I have found reviewers judg-
ing our work as if it were work on denotational semantics.
They are always disappointed because they find no new math-
ematics. In fact, we are pleased to have been able to apply the
simplest of mathematical models. The fact that we have new
things to say on how to represent and organise mathemati-
cal information is not important to many reseatchers because
they have never watched a software developer try to answer
specific questions about the code. More important, the broad
field ofsoftwate documentation includes many small and solv-
able research problems that are not being pursued by those
who have the necessary mathematical background. In the
meantime, the popular literature continues to suggest that
software developers can be "engineers" without knowing or
using mathematics. My colleagues and I have published on
this topic [11, 14] but those papers represent early work and
there are many research problems that must be solved before
the methods become suitable for everyday use.

1 1 C o n c l u s i o n s

I am repeatedly amazed at how unaware many software engi-
neering researchers seem to be of the differences between what
is recorded in research literature and textbooks and what is
actually happening. I am also amazed at how fzequently peo-
ple respond to academic papers without trylng to understand
the "real" problems or asking how current systems solve those
problems.

I conclude with advice to Softwate Engineering reseatchers:

• Keep aware of what is actually happening by reading in-
dustrial programs.

• Try to apply your ideas to programs that were written for
some other purpose, not to programs that you made up to
illustrate your ideas.

• Don't attack the symptoms, but keep looking for the causes.
The developers can, and will, attack the symptoms at least
as well as we can.

• Keep asking why people aren' t using our ideas and don't
take "stupidity" or "ignorance" as an answer. You cannot
eliminate stupidity and you can do little to correct igno-
rance, but if there is a weakness in existing research results,
you have found a solid research problem.

• Be wary of fads.. During my career I have seen many top-
ics become very populat and then disappear. Who today
is seriously interested in Algol-68, P L / I or Ada? However
it hasn't been long since the research literature was filled
with papers on those topics. Research topics are particu-
larly likely to be fads in a field where each new paper is a
response to a previous paper rather than to a fundamen-
tal problem. Always look for the fundamental problem and

don't jump on bandwagons. Papers about yesterday's fads
are forgotten.

Be wary of vaguely defined buzzwords. A "buzzword" is a
word that everyone knows but few people can define. "Buz-
zword" is a buzzword. Much of today's literature is a de-
bate about the meaning of words that is a disguised as a
debate about how to design software. For example, m o s t
of the debates that I see about the strengths and weakness
of various Object Oriented (O-O) approaches boil down to
differences of opinion about what O-O means. Pointing out
buzzword problems is another service that reseatchers can
provide [9].

The secret to successful reseatch is picking the right problem.
I have known many people who were better at solving prob-
lems than I am, but, I have been honoured by SIGSOFT's
award because I found my research problems by working with
developers.

R e f e r e n c e s

[1] Brooks Frederick P. Jr., "The Mythical Man-Month: Es-
says on Software Engineering", Addison-Wesley Publishing
Co. 1975, Frederick P. Brooks Jz., ISBN 0-201-00650-2.

[2] Fagin M.E., "Design and Code Inspections to Reduce Er-
rors in Program Development", IBM Systems Journal, No. 3.
1976 pp. 184-211

[3] Fagin M.E., "Advances in Software Inspections", IEEE
Trans. Software Engineering, July 1986 pp. 744-751

[4] Gilb, Tom "Software Inspection", Addison Wesley, 1993

[5] Patnas, D.L. "Information Distributions Aspects of Design
Methodology", Proceedings of IFIP Congress 1971, pp. 26-30,
1972

[6] Patnas, D.L. "A Technique for Software Module Specifica-
tion With Examples", Communications of the ACM, Vol. 15,
No. 5, pp. 330-336, May 1972

[7] Patnas, D.L. "On the Criteria To Be Used in Decomposing
Systems Into Modules" Communications of the ACM, Vol. 15,
No. 12, pp. 1053-1058, December, 1972.

[8] Patnas, D.L., "Some Conclusions from an Experiment in
Software Engineering Techniques", Proceedings of the 197~
FJCC, 41, Part I, pp. 325-330.

[9] Patnas, D.L., "On a 'Buzzword': Hierarchical Structure",
IFIP Congress '74, North Holland Publishing Company, 1974,
pp. 336-339.

[10] Patnas, D. L., Weiss, D. M., "Active Design Reviews:
Principles and Practices", Proceedings of the 8th International
Conference on Software Engineering, London, August 1985.
Also in Journal of Systems and Software, December 1987.

[11] Paxnas, D. L., Madey, J., Igiewski, M., "Precise Docu-
mentation of Well-Structured Programs", IEEE Transactions
on Software Engineering, Vol. 20, No. 12, December 1994,
pp. 948 - 976.

ACM SIGSOFT Software Engineering Notes vol 23 no 3 May 1998 Page 68

[12] Parnas, D. L. "Inspection of Safety Critical Software us-
ing Function Tables", Proceedings o/IFIP World Congress
199~, Volume III, August 1994, pp. 270 - 277.

[13] Parnas, D. L., Asmis, G.J.K., Madey, J., "Assessment
of Safety-Critical Software in Nuclear Power Plants", Nuclear
Safety, vol. 32, no. 2, April-June 1991, pp. 189-198.

[14] Parnas, D.L., Madey, J., "Functional Documentation for
Computer Systems Engineering" Science o/ Computer Pro-
gramming (Elsevier) vol. 25, number 1, October 1995, pp.
41-61, a

E d i t o r ' s F i l l e r

Hey! Wasn't that good?

Didn't you catch yourself say "Yes! I knew that!"

I am glad David took the time to speak his mind, now
if anyone has anything to add, send me a note and I
will put it in a subsequent issue.

And now, another invited paper.

Read on and learn.

A History of Software Engineering
at the National Science Foundat ion

(A Personal View)

Bruce H. Barnes
Deputy Division Director (Retired)

Computer and Computation Research
National Science Foundation

<bhbaznesQero].s. oom>

The academic software engineering community can be justly
proud of its accomplishment in the last twenty-five years.
When I joint the National Science Foundation in 1974, Soft-
ware Engineering as an academic discipline hardly existed.
Structured programming and top-down design had permeated
the curriculum, but that was the extent of software engineer-
ing in the curriculum. "Curriculum 1978" did not use the
term Software Engineering, but emphasized good software de-
velopment practices. In the objectives for the curriculum it
stated that "Computer science majors should be able to write
programs in a reasonable amoui~t of time that work correctly,
axe well documented and arereadable." The report also notes
that "The topics [in structured design] are of such importance
that they should be considered a common thread through-
out the entire curriculum." By 1986 most Computer Science
programs had introduced senior project courses involving a
significant portion of quality software engineering practices.
The 1989 ACM report on "Computing as a Discipline" in-
cluded Software Methodology and Engineering as one of its
elements. The "Curriculum 1991" report of the ACM and the
IEEE-Computer Society recommends a significant amount of
software engineering for every computer science graduate and
includes a sample curriculum with a Software Engineering em-
phasis. Currently there are Software Engineering programs,
especially in Europe. There are even discussions concern-
Lug the accreditation of undergraduate programs in Software
Engineering. Over the last 25 years the Computer Science
curriculum has evolved from one based on the paradigms and
philosophy of Mathematics and the Sciences, to one with more
of an engineering emphasis. I believe that NSF's early recog-
nition of the role of Software Engineering in the academic
environment contributed to the evolution.

I was on leave from The Pennsylvania State University when I
staxed with the Nation Science Foundation as Program Direc-
tor for Theoretical Computer Science. This program was part
of the Computer Science and Engineering Section of the Divi-
sion of Computer Research. The Division also had a section
on Computer Applications in Research. The goal of this sec-
tion was to develop and promote computational techniques for
employing computers in scientific and engineering research.
Software Quality Research was one of the programs in that
section. It mainly supported the development of very high
quality mathematical software. LINPACK was one of its ma-
jor successes. It als0 supported some research into techniques
for producing high quality software, i.e. software engineer-
ing. In 1976 we decided that computer applications were

