
SOFTWARE ENGINEERING - AS IT IS

Barry W. Boehm
TRW Inc.

Redondo Beach, CA 90278

SUMMARY AND ABSTRACT

This paper presents a view of software engineering as it is in 1979. I t
discusses current software engineering practice with respect to lessons
learned in the past few years, and concludes that the lessons are currently
not heeded roughly half of the time. The paper discusses some of the
factors which may account for this lag, including rapid technological change,
education shortfalls, technology transfer inhibitions, resistance to disci-
plined methods, inappropriate role models, and a restricted view of software
engineering.

The paper also updates a 1976 state of the art survey of software
engineering technology, including such topics as requirements and specifi-
cations, design, programming, verification and validation, maintenance,
software psychology, and software economics. It concludes that the field
is making solid progress, but that it is growing more complex at a faster
rate than we can put it in order.

SOME SOFTWARE ENGINEERING LESSONS LEARNED

Recently, I reviewed a paper which succinctly summarized many of
the software engineering lessons we have (hopefully) learned over the past
few years. Here are some excerpts:

1. Testable Requirements

"As soon as specifications for a system program are definitive, con-
tractors should begin to consider how they will verify the program's meeting
of the specifications. In fact, they should have had this in mind during the
writing of the specifications, for it is easy to write specifications in such
terms that conformance is impossible to demonstrate. For example: 'The
program shall satisfactorily process all input traffic presented to it.' "

2. Precise Interface Specifications

"The exact interpretation of digital formats, the rise and fall times of
waveforms, special restrictions as to ~vhen each type of data may or may not
be sent - these and sundry other details must be agreed on by all parties
concerned and clearly written down. Accomplishing this is apt to be a
monumental and tedious chore, but every sheet of accurate interface defi-
nition is, quite literally, worth its weight in gold."

3. Early Planning and Specification

"If management takes the casual list-on-paper at~titude toward a
computer program, the consequence will be procrastination of complete
program specification, followed by disbelief and consternation when lack
of a proper program delays the whole system."

4. Lean Staffing in Early Phases

"The designers should not be saddled with the distracting burden of
keeping subordinates profitably occupied Quantity is no substitute for
quality; it will only make matters worse."

5. Core and Time Budgeting

"Budgets of time and storage, as mentioned earlier, should be set
up, and monthly or more frequent reports are advisable on how well they
are being adhered to [For storage budgets, include] . . . a safety factor
of 25% or more, depending on the estimator's self-confidence and the
likelihood of expansion in program requirements (they always expand)."

6. Careful Choice of Language

"Choosing a]Higher Order Language], like choosing a wife, is hard
to undo after getting involved, and is not to be taken lightly."

7. Objective Progress Monitoring

"Percent-of-completion estimates will be asked for, and unless tasks
are defined with unusual care, figures will be difficult to arrive at or decid-
edly misleading."

8. Defensive Programming

"Programmers should be imbued with the doctrine of anticipating
possible troubles and detecting or correcting them [in their program] ."

9. Integration Planning and Budgeting

"A common error in planning production of a program is to under-
estimate the time needed to combine units after they have been coded."

10. Early Test Planning

"Program acceptance tests should be defined early enough for contem-
plated acceptance-test inputs to be used in the terminal stages of program
checkout."

11

HOW WELL HAVE THE LESSONS BEEN LEARNED?

Let us compare the above lessons learned with some samples of cur-
rent software engineering practice gathered from a set of 50 term papers
from a software engineering course I gave at USC earlier this year. The
examples are drawn from recent government, industry, and university soft-
ware projects in the Los Angeles area, and should form a reasonably repre-
sentative sample of "Software. Engineering, As It Is" as seen by the working-
level software engineer.

1. Testable Requirements

"A requirements spec was generated. It has a number of untestable
requirements, with phrases like 'appropriate response' all too common. The
design review took weeks, yet still retained the untestable requirements."

"The only major piece of documentation written for the project was
a so-called specification. Actually, the specification was written after the
program was completed and looked more like a user's manual."

C H I 4 7 9 - 5 / 7 9 / 0 0 0 0 - 0 0 1 1 5 0 0 . 7 5 © 1979 I E E E

2. Precise Interface Specifications

"No one had kept proper control over interfaces, and the require-
ments specs were still inexact."

"The interface schematics were changed over the years and not
updated, so when we interfaced with the lines, fuses were burned, lights

wont out . . .".

"The interface between the two programs was still not exact. When
interfacing the two programs we ran into run time errors. Debugging was
difficult because of the lack of documentation. We also began to forget
exactly what our code did in certain situations and wished we had done
more documentation."

3. Early Planning and Specification

"Despite one team member's efforts to develop a plan and some
interface specs, the other two members felt there was no time or need to
plan anything, and that each member should begin coding to complete the
project on time. In fact, this did not save time, but caused many problems
and delays."

"A software development plan was thrown together at the customer's
request. It contained such good words as 'structured programming,' 'chief
programmer team,' 'structured walkthroughs,' etc. This plan has been
ignored since its creation, both by the project manager and the software
head."

"This is all common sense, yet I know of no R&D minicomputer
installation that uses a formal documentation procedure. It is with surprise
that an engineer finds that paperwork can actually save time."

4. Lean Staffing in Early Phases

"A t an early stage in the design, I was made the project manager and
given three trainees to help out on the project. My biggest mistake was to
burn up half of my time and the other senior designer's time trying to keep
the trainees busy. As a result, we left big holes in the design which killed

us in the end."

5. Core and Time Budgeting

"The core size is already three times the budget, and is running over
the 90% mark. Two-thirds of the program is running from slow memory,
making the execution time well over budget as well."

"This machine had a limited core size which resulted in much trickery
and use of machine-dependent techniques in order to get the program to
f i t . "

"Lit t le planning was done, and the estimates of what the software
development would entail were arbitrarily cut by the first project manager."

6. Careful Choice of HOL

"Although two other computer systems were clearly better as a host
for our upgrade, we were locked into Brand X because of the huge inventory
of code we had written in a Brand X-oriented HOE"

7. Objective Progress Monitoring

"Monthly status reports saying X% complete were given to the cus-
tomer. As predicted in the text, the 50% mark tended to get reported as
90% complete."

8. Defensive Programming

"The programmer was a victim of the sad illusion that if the users
were given a set of rules for entering the data, they would enter the data
correctly. She had not even dreamed of the things users could do to destroy
the database."

"The program is not very guarded. In an effort to save money, several
types of error checking proposed were eliminated."

9. Integration Planning and Budgeting

"No integration plan has been constructed, nor have configuration
management procedures been established."

10. Early Test Planning

"The acceptance test was a disaster. The users got into some of the
exotic options and everything blew up. After that, we had a hard time
getting them to believe anything we said about the system. There was no
test planning - we just rushed into it blind."

11. Software Standards: General

"The design was not in modules, making it impossible to extend the
use of the program. It was easier to write a new program than modify or
correct the existing one."

"Rather than attempt to restructure the particular area that is being
worked on, most of the programmers insert "patches" that cause the flow
of control to snake around so that it is nearly impossible to try to follow
the logic."

12. Software Management: General

"Morale dropped to such a low level that we were no longer a team.
Deadlines were not met, interfaces did not work, programs did not f i t
requirements, and people quit."

To be fair, I should point out that the above excerpts are not a fully
representative sample of the project experiences cited in the term papers.
There were about an equal number of positive experiences in which people
had evidently learned the lessons identified above and applied them
successfully.

HOW SOON WILL WE LEARN THESE SOFTWARE
ENGINEERING LESSONS??

Still, a 50% rate of applying these lessons is not very acceptable. I t
would certainly appear that the paper quoted above speaks directly to the
current problems faced by software engineering practitioners. Its advice is
timely, topical, and evidently much-needed today. I t would appear, for
example, to be a good candidate for the Proceedings of this Conference.

Unfortunately, the paper has already been published. In 1961.

It is "Pitfalls and Safeguards in Real-Time Digital Systems with
Emphasis on Programming," by W.A. Hosier. It appeared in the IRE
Transactions on Engineering Management in June, 1961. I t is based on the
software engineering experiences accumulated on the U.S. SAGE amd
BMEWS command and control projects in the late 1950's. In the software
engineering field, I would recommend everyone reading it, for two main
reasons:

Although parts of the paper are a bit dated, most of its advice is
still very good and well-expressed. (Perhaps the most striking
anachronism in the world of 1979 is the statement that choosing
a wife is hard to undo.)

12

2. I would hope that, in reading it, you would find yourself both-
ered, as I was, by the question:

" I f we knew all those things 18 years ago, why aren't we doing
them now?"

I think this question is worth exploring, as its answers are certainly
relevant to the topic question: "How soon will we learn these software
engineering lessons?" In particular, the next section will discuss some likely
reasons why our progre.ss has been slow in assimilating software engineering
techniques, and consider ways that we might be able to speed up the process.

SOME FACTORS INHIBITING GENERAL PROGRESS IN
SOFTWARE ENGINEERING PRACTICE

Here are six factors which I believe are inhibiting our general progress
in software engineering practice:

1. The field is growing rapidly.

2. We aren't teaching many of the above lessons to students.

3. Technology transfer is slow.

4. We resist the required discipline.

5. We have our role models mixed up.

6. We often take a restricted view of software engineering.

I . The Field Is Growing Rapidly

Our software engineering techniques have to be reexamined every
time we are confronted with a significant change in the computer tech-
nology we work with. Although we generally find (as with microprocessors)
that the general principles of software engineering still apply [Rauscher
78, Magers 78], we find that some techniques (e.g. instrumentation and test
techniques) need to be modified to f i t the new technology. There is not
much that we can or want to do to eliminate this source of problems.

The field is also growing rapidly in terms of the number o f people
assimilated per year, who must necessarily relearn many software engineer-
ing lessons for themselves. We should be able to improve our status here via
education, as discussed below.

2. We Aren't Teaching Many of the Above Lessons to Students

A recent survey [Thayer et al. 79] of software engineering instruc-
tion found large discrepancies between what professors felt were critical
software engineering issues and what was being covered in software engineer-
ing courses. Of 20 major issues, only two (plan for maintainability and con-
trol quality) were covered to the extent commensurate with the issue's
criticality. The other 18 issues (e.g., plan requirements, plan project, plan
test, control visibility) have a very high correlation with the issues dis-
cussed above, but were under-covered in current courses.

The main reasons given for not covering those issues more were:

- lack of expertise
- lack of texts and other teaching materials
- inappropriate for computer science departments

Hopefully, recognition of the first two reasons will lead to activities to fill
the needs expressed. The third reason was given by some professors who
felt that such management-oriented material belonged in the business
school. However, none of the business schools were teaching such material,
either.

Our University education does best when it teaches people funda-
mentals: concepts and approaches which will serve the student through his
entire practicing career. Speaking personally, I would have been helped
much more in my overall software engineering career by a course on how to
apply Hosier's lessons learned, or by a course on software economics, than
I have been by course material I had on optimal sorting on a 2-tape machine
with a poorly buffered memory, or on predicting the growth of truncation
errors on machines with poorly designed arithmetic units, l 'm not sure that
today's microprocessor courses on how to hack around the problems in
the Cromemco loader are much better from the standpoint o f teaching
fundamentals. Thus, I think that a reasonable argument can be made that
the topics above are appropriate for computer science departments.

Good progress is being made by the IEEE/CS Subcommittee on Soft-
ware Engineering Education toward defining a Master's curriculum in soft-
ware engineering [Fairley 79]. However, progress in implementing the
curriculum is slow. At this writing, only one University (TCU, under A. J.
Hoffman) has, to my knowledge, actually established a formal Masters
degree in software engineering.

3. Technology Transfer is Slow

Over the past few years, I have been able to observe some of the
ways in which software engineering technology is transferred into a la, ge
industrial organization such as TRW. The "technology transfer measuring
stick" shown in Figure I is one attempt to characterize what it is that makes
such an organization adopt a new technology item. I f a paper is published
which simply presents an idea which addresses a significant problem, the
idea may be picked up and used, but rarely. (Sometimes we have done
this, only to find that even the originator had subsequently discarded the
idea, although not as publicly as it was presented.) In general, software
development people want to be assured that the idea has worked success-
fully in practice, on a job similar to theirs, and (ideally) by people who are
available to apply it to their project.

1 0 0

9 0

8 0

7 0

6 0

5 0

4 0

3 0

2 0

1 0

m

m

m

m

m

D

m

EXPERIENCED USERS AVAILABLE T O S U P P O R T P R O J E C T

TRIED SUCCESSFULLY ON A DEVELOPMENT PROJECT

PRODUCTION-ENGINEERED FOR DEVELOPMENT USE

COMES WITH COMPARATIVE ANALYSIS

SOLVES THE FULL PROBLEM

ACTUALLY SOLVESA PROBLEM

- - A D D R E S S E S A N I M P O R T A N T P R O B L E M A R E A

Figure 1. Research Results: A Measuring Stick for Successful Technology
Transfer

This ideal is not always feasible, but in reviewing software engineer-
ing contributions which have been picked up most readily at TRW, they
tend to cluster at the higher end of the measuring stick in Figure I . Some
examples are top-down structured programming [Baker 75], Pascal [Wirth
71], ISDOS [Teicheroew-Hershey 77], PDL [Caine-Gordon 75], Concur-
rent Pascal [Brinch-Hansen 77], and Parnas' specification and design tech-
niques [Parnas 78, 79; Heninger et al. 78].

13

I have found that the best way to judge whether a paper is at the
higher or lower end of the technology transfer scale is to look at its conclu-
sions. I f they say something like,

"This technique has been implemented and found superior to
other techniques for the following classes of problems: . . . "

then the contribution will tend to be at the top of the scale. I f the conclu-
sions say something like,

"Although this technique has not been implemented, the
author believes.. "

or i f the paper has no conclusions at all, then the contribution will tend to
be at the bottom of the scale. We can all help to improve technology trans-
fer by moving our contributions higher up the scale, even though it may
mean publishing fewer papers.

4. We Resist the Required Discipline

We are beginning to accept the fact that there is "A Discipline of
Programming" [Dijkstra 76] which requires us to accept constraints on our
programming degrees of freedom in order to achieve a more reliable and
well-understood product. We are reaching the point where we are willing
to tie ourselves down by declaring in advance our variable types, weakest
preconditions, and the like. But our free spirits still rebel at tieing our-
selves down more fully by declaring in advance just what software we are
going to build, how we are going to put it together, who is going to verify
it and how, and what is the user going to do with it once he gets it. It's
still much more attractive to jump in and start laying code. l'm afraid that
this particular problem will be a long time in going away.

5. We Have Our Role Models Mixed Up

Another related factor inhibiting the progress of disciplined software
engineering practice is something we call the "Wyatt Earp Syndrome." The
"Wyatt Earp" is the indispensible programmer: the one who carries the
critical program logic and design decisions around in his head, never docu-
menting anything he does. When the inevitable crisis comes along, only he
can save the situation, coming on like Wyatt Earp saving the town from the
bad guys. All too often, the result is that the indispensable programmer is
given a raise or a bonus, and becomes a hero or role model for other pro-
grammers in the organization. And in the process, the organization has
become even more dependent on its Wyatt Earp than it was before.

The solution? Jerry Weinberg, a highly humanitarian person, has
described it concisely: " I f a programmer is indispensable, get rid of him as
soon as possible" [Weinberg 71].

6. We Often Take A Restricted View of Software Engineering

The engineering of large software systems is as complex as any engi-
neering ventures in history. Even judging conservatively, a 1,000,000-
instruction software product has at least 10,000 component functions
(assuming 100 instructions per function), each of which can be specified
and developed in at least two different ways. Thus, even at this function
level, there are '210,000, or about "I 03,000, combinations of function choices
which the software engineer must sort out*.

When dealing with this level of complexity, it is absolutely necessary
to simplify things to make them intellectually tractable. In doing so, we
often take a restricted view of "software engineering" which equates it to
"programming methodology," and then proceed to tackle our program-
ming problems.

Problems With the Restricted View

This restricted view is a good thing from the standpoint of clarifying
our approach to programming tactics. However, software projects which
have taken this restricted view exclusively, to the exclusion of the resource
engineering and human relations aspects of software engineering, have
unfortunately proceeded to relearn many of the lessons discussed above.
One order-processing software project did a beautiful job of top-down,
deductive structured programming, only to come to grief because it had
not spent enough effort defining the proper " top" of the system. As a result,
the overall order-processing system was more inefficient, error prone, and
frustrating to use than even its cumbersome manual predecessor. Another
well-structured, modular, hierarchical real-time system failed when it
simply would not work in real time on the user's workload - a fact that
would have been evident by an early workload characterization and resource
analysis of the system.

The need for using the broad rather than the restricted view of soft-
ware engineering is also seen in Figure 2, which summarizes the problems
in computer system acquisition found in 151 U.S. General Accounting
Office audits [GAO 77]. Although technology factors are a significant
source of acquisition problems, it is clear from Figure 2 that the major
problem sources are more in the areas of acquisition planning and project
control.

POOR
PLANNING

POOR
CONTROL

UNDERUTILIZATION
OF EQUIPMENT

ACQUISITION
MECHANICS

TECHNOLOGY
FACTORS

GOVT-WIDE
MANAGEMENT

[SOURCE: P~S~%t~]
m

10 20 40 50 660
PERCENT OF GAG REPORTS IDENTIFYING PROBLEM

Figure '2. Problems with Computer System Acquisition and Use in U.S.
Government, 1965-1976

Problems With the Sequential Approach

It would be convenient if we could perform a sequential "separation
of concerns" which neatly factored the software engineering problem into a
"programming-methodology" problem and a separable set of problems
which covered all other considerations. There are two basic approaches for
doing this - the "deductive top-down" approach and the "tuning"
approach - but unfortunately they have not worked out well in general
practice.

In the "deductive top-down" approach, all of the resource-engineering
and human-relations problems are worked out in advance. The result of this
activity is a fully-defined requirements specification, which can then be
frozen and used as the basis of a deductive, top-down programming activity.
Unfortunately, this approach will not work in general because of the funda-
mental volatility of software requirements. For example, I BM's Santa Teresa
software organization has found, on a sample of roughly 1,000,000 instruc-
tions of software produced per year to IBM-determined requirements, that

*Or~successful early software product JOSS [Shaw 64] was characterized
as "I0,000 small.decisions, 99.9% of which were made correctly."

14

the average project experiences a 25% change in requirements during the
period of its development [Climis 79].

The other approach is the "tuning" approach, in which the software is
developed deductively from a first-cut set of requirements and then modified
on the basis of user lessons learned in the meantime. Unfortunately, this
approach will not work in general because of the inertia of user organiza-
tions. Once an initial software product is put into operation (however
inappropriate), users tend to develop operational mechanisms to compen-
sate for the deficiencies in the software; these are extremely hard to change,
once established. In these' cases, the degrees of freedom for tuning the
system are much more restricted than had been originally anticipated, and
a number of preferable modes of operation have become practically fore-
closed by organizational inertia. In other cases, such as in some medical
information systems, the initial programming product was so far from
being acceptable to the doctors it was supposed to serve that the product
was scrapped entirely, leaving no opportunity for tuning at all.

The Broad View of Software Engineering

For these reasons, it is important not to restrict our view of "soft-
ware engineering" to cover only "programming methodology," but to
adopt a definition of "software engineering" which encompasses the neces-
sarily concurrent concerns of resource engineering and human relations.
Fortunately, such a definition is consistent with common dictionary
[Webster 79] definitions of "software" and "engineering."

Software is the entire set of programs, procedures, and related
documentation associated with a system and especially a com-
puter system.

Engineering is the application of science and mathematics by
which the properties of matter and the sources of energy in nature
are made useful to man in structures, machines, products, systems,
and processes.

Since the properties of matter and sources of energy over which software
has control are embodied in the capabilities of computer equipment, we can
combine the two definitions above as follows:

Software Ensineerin 8 is the application of science and mathe-
matics by which the capabilities of computer equipment are made
useful to man via computer programs, procedures, and associated
documentation.

Discussion

This definition of "software engineering" contains two key points
which deserve further discussion. First, our definition of "software" includes
a good deal more than just computer programs. Thus, learning to be a good
software engineer means a good deal more than learning how to generate
computer programs. It also involves learning the skills required to produce
good documentation, data bases, and operational procedures for computer
systems.

The second key point is the phrase "useful to man." From the stand-
point of practice, this phrase places a responsibility upon us as software
engineers to make sure that our software products are indeed useful to man.
I f we accept an arbitrary set of specifications and turn them into a correct
computer program satisfying the specifications, we are not discharging our
full responsibility as software engineers. We must also apply our skills and
judgment, to the job of developing an appropriate set of specifications,
and to the job of ensuring that the resulting software does indeed make the
computer equipment perform functions that are useful to man. Thus,
concerns for the social implications of computer systems are part of the
software engineer's job, and techniques for dealing with these concerns
must be built into the software engineer's practical methodology, rather
than being treated as a separate topic isolated from our day-to-day practice.

From the standpoint of learning, the phrase "useful to man" implies
that the science and mathematics involved in software engineering covers
a good deal more than basic computer science. For something to be useful
to man, it must satisfy a human need at a cost that man can afford. Thus,
the science and mathematics we must learn to apply as software engineers
also includes the science of understanding human needs and human rela-
tions, i.e., psychology; the science of costs and values, i.e., economics; and
the science of developing products within given cost budgets, i.e., manage-
ment science.

Software Engineering Curriculum Implications

From the standpoint of learning, therefore, I find the current direc-
tion of evolution of the IEEE proposed masters curriculum in Software
Engineering [Fairley 79] somewhat disappointing. The first draft of the
curriculum contained both a course on Human Factors in Computing
System Design and a course on Security and Privacy. In the second draft
these were reduced to a single course which somewhat awkwardly tries to
cover both topics together. Neither draft is very strong in the area of soft-
ware engineering economics, although software management is appro-
priately highlighted in a course. Again, given the dominance of these con-
cerns in practical software engineering situations, it is hoped that future
iterations of the IEEE curriculum recommendations will contain a stronger
emphasis on the broader view of software engineering.

RECENT DEVELOPMENTS

This portion of the paper will convey some of the recent develop-
ments in the field, as part of the "software engineering - as it is" charter
of the paper. For brevity and convenience, I will only cover developments
since the "Software Engineering" survey paper I wrote in 1976 [Boehm
76]. The first section will cover recent developments in the "programming
methodology" areas of

1. Requirements and Specifications

2, Program Design

3. Programming

4. Verification and Validation

5. Maintenance

The second section will cover recent developments in the more broad-
based areas of software engineering such as software phenomenology and
economics, software psychology, and human factors in software engineering.

1. REQUIREMENTS AND SPECIFICATIONS

There are three main approaches for expressing what a software
product is to do in a set of requirements specifications. These are:

Informal specifications. These are the traditional free-form
natural-language specifications. They require virtually no train-
ing to write or read, but their ambiguity and lack of organization
generally lead to serious problems with incompleteness, incon-
sistency, and misunderstandings among the various groups of
people (users, buyers, developers, testers, trainers, interfacers,
etc.) who must use them to guide their software development
activities,

Formatted specifications. These are specifications expressed in
a standardized syntax, which provides a framework for orgamz-
ing the specifications and performing basic consistency and
completeness checks. They generally require a moderate level
of training to read and write well, but can be mastered easily by
average programmers. Their formatted nature precludes certain
sources of ambiguity, but their imprecise semantics implies that

t5

other sources of error are still present (e.g., one can define and
use a term such as "mode" or "mechanism" and not pin down
precisely what it means).

3. Formal specifications. These are specifications expn~ssed in a
precise mathematical form, with both syntax and semantics
rigorously defined. They require a good deal more expertise
and training to be able to read and write, and a longer time to
write than formatted specifications. However, they eliminate
virtually all sources of imprecision and ambiguity in a specifica-
tion, and provide a basis of constructing a correct program and
mathematically verifying its equivalence to the specification.

A good deal of progress has been made in the last three years in the
development and use of both formatted and formal specifications. In the
area of formatted specifications, the two major automated tools, ISDOS/
CADSAT [Teichroew-Hershey 77] and SREM [Bell et al. 77, Alford 77]
have continued to mature through use. ISDOS/CADSAT has added more
powerful consistency and completeness checks, and a number of user-
inspired improvements in data entry and output reports. SREM has become
available on more host computers, has added capabilities to support business
data processing and distributed processing applications, and has been used
successfully by several organizations outside of its originators at TRW and
the U.S. Army BMD Advanced Technology Center [Alford 78]. Non-
automated tests such as SADT [Ross-Schoman 77] have also experienced
a significant expansion in the number and variety of successful users. In
addition, other automated systems of formatted specification have been
developed, such as AXES [Hamilton-Zeldin 79], a function-oriented
specification method and SAMM [Lamb et al 78], which appears to be
strongly based on SADT. A good review of formatted specification tech-
niques is found in [Ramamoorthy-So 78].

In the area of formal specifications, a good summary and discussion
of recent progress can be found in [Liskov-Berzins 79] and in the dis-
cussion of this article by Parsons, Goguen, Hamilton, and Zeldin in
[Wegner 79]. Most significantly, formal specification techniques are begin-
ning to be used with success on nontrivial practical software products.
Examples are the use of SPECIAL [Roubine-Robinson 77] in developing
the (hopefully) same operating systems PSOS [Feiertag-Neumann 79]
and KSOS [Berson-Barksdale 79], and the use of AFFIRM [Musser 79] in
the attempt to verify the Delta military message-processing software
[Gerhart-Wile 79].

Also, some significant progress has been made at bridging the gap
between the more readable and easy-to-specify informal and formatted
specifications, and the more precise, ambiguous formal specifications. One
interesting approach is the Specification Acquisition from Experts (SAFE)
approach in [Balzer et al. 77], which provides automated tools to help
make an imprecise specification more precise. Another highly significant
achievement is the large (over 400 pages) A-7 avionics software specifica-
tion [Heninger et al 78], [Heninger 79], based largely on the specification
techniques of Parnas. This specification combines a great deal of precision
with a great deal of readability, and handles the complexity of a large
practical problem extremely well.

The main result o f all this progress is to expand the domains in which
formal and formatted specification techniques are practical to use. The best
way I have found to characterize these domains is shown in Figure 3. It
shows that the more expensive, time-consuming, expert-oriented formal
methods are most appropriate when the requirements are very stable and
don't need frequent rework (you can affoi'd to use the formal methods)
and when the application requires a very high degree of fault-freedom (you
can't afford not to use the formal methods). The increased power, effi-
ciency, and practical experience with formal and formatted specification
techniques is pushing their domains of applicability down (more and more)
toward problems with l~ss stable software requirements and lower require-
ments for fault-freedom, continually reducing the domain in which informal
techniques are preferable.

HIGH

REQUIREMENTS
STABILITY

LOW

• NUCLEAR RELEASE SOFTWARE
• SECURITY KERNELS

FORMATTED

O I~p~ ~ ~ T O ~ y v '~'''r INFORMAL

MODELS •

LOW ~ '~ , .~_~-~ -~ ; ~ . T . / - ~ . , 5 ~ I ' ~ HIGH

Figure 3. Problem Domains for Formal, Formatted, and Informal Methods

2. SOFTWARE DESIGN

A good deal of progress has also been made in the area of software
design. Considerable experience with earlier design techniques has been
accumulated, with the general conclusions that the HIPD technique has
been less successful; that Program Design Language (PDL) [Caine-Gordon 75]
has been successful and demonstrably superior to flowcharts [Ramsey
et al. 78] ; and that the various forms of structured or composite deisgn
[Yourdon 75, Myers 75, Yourdon-Constantine 78, De Marco 78] have been
highly successful.

Design techniques emphasizing data structuring have also been matur-
ing, particularly those of]Jackson 75] and [Warnier 74]. The technology
of life-cycle design took a significant step forward with the publication of
Parnas' "Designing Software For Ease of Extension and Contraction"
[Parnas 78, 79], which provides sound guidelines for using information-
hiding principles to organize software in ways which make it easier to
accommodate future changes. A good recent survey of software design
techniques is [Freeman-Wasserman 77].

A number of organizations are developing extremely ambitious,
all-encompassing computer-aided-design systems for software design, includ-
ing capabilities for control structuring, data structuring, performance
modeling, core budgeting, complexity analysis, assertions, flow analysis,
cost analysis, and management tracking. These organizations would be well-
advised to proceed with caution: such systems can easily collapse under
their own weight. At least, this was our experience with the DEVlSE
system [Boehm et al. 75], which included ISDOS and PDL as subsets, along
with a number of the abovementioned capabilities. Although the originators
were able to navigate reasonably well through the resulting welter of data
entry requirements and control options, most other designers at TRW
clearly preferred to use PDL (which was easy to learn and use) and imposed
fewer constraints on their design approach. Our conclusion has been that a
library of simple, limited-purpose design aids is a preferable way to proceed
until we better understand the design process.

3. PROGRAMMING

The most significant recent advance in programming methodology
has been the constructive approach to developing correct programs or
"programming calculus" formulated in [Dijkstra 75], elaborated with
numerous examples in [Dijkstra 76], and discussed further in [Gries 76].
This approach provides a clean, powerful method for working with a pro-
gram specification to either derive a program structure which correctly
implements the specification, or (just as important) to identify portions of
the specification which are incomplete or inconsistent. At this point, it is
becoming clear that the approach does not fully address all the problems
involved in the development of large-scale software and user-oriented
software (see the discussions by Gries, Homing, Liskov, and Parnas in
[Wegner 79] and the discussion of"Problems with the Sequential Approach"

16

above). However, the concepts involved provide powerful tools for attack-
ing many of our most difficult programming problems.

A strong example of this power is given in the approach of [Hoare 78]
in applying the concepts of weakest preconditions, guarded commands,
and indeterminacy to provide a clear, disciplined set of techniques for
dealing with the extremely difficult area of cooperating sequential pro-
cesses. In the area of concurrent programming, a good deal of progress has
also been made in applying the Concurrent PASCAL language to practical
problems [Brinch Hansen 77, Brinch Hansen 78, Stepczyk 78] and deter-
mining improvements to cover some of the problems encountered with
distributed monitors and with efficiency. Good surveys of other work in
distributed and concurrent processing are given in [Stankovic-van Dam 7|)]
and [Bryant-Dennis 79].

In the area of programming languages, the most significant develop-
ment has been the progress toward the ADA language sponsored by the
U.S. Department of Defense [Fisher 77, Ichbiah 79]. Although ADA has
been widely criticized for its wide scope, ambitious incorporation of new
concepts, and rapid timetable, it has come through so far as a well-designed,
responsive language with a very good chance of becoming the next-generation
standard programming language for a wide range of applications.

The amount of criticism directed toward ADA has been perhaps the
most positive aspect of the entire ADA experience to date. No other lan-
guage has had anywhere near as much open and broad-based review of its
general and specific requirements and its preliminary and detailed design
before proceeding into language development. In this respect, the ADA
process provides a good model and base of experience for similar develop-
ments of highly standardized software in the future.

4. VERIFICATION AND VALIDATION

Progress in formal program verification (proof of correctness) tech-
niques was discussed, to some extent, in the remarks above on formal
specification techniques. Again, with respect to Figure 3, the current prog-
ress in formal methods implies that they already represent a viable option
for application to practical problems with very stable requirements and a
very high level of required fault freedom; and that their domain of appli-
cability in Figure 3 will continue to expand. A survey of current work in
formal verification techniques is given in [London 79].

Recent contributions have also given us a better understanding of
what we should expect from formal verification techniques - which is
considerably less than a full guarantee that the verified program is correct.
A thorough analysis of a number of errors in published program proofs
has been given in [Gerhart-Yelowitz 76]. An extensive discussion of other
difficulties with formal verification - understandability and credibility of
proofs, scaling up to large systems, program changes - and analogous
experience in engineering and mathematics has been provided in [De Millo
et al 79], with the general conclusion that the practical use of formal
techniques will never penetrate the lower regions of requirements stability
and required fault-freedom in Figure 3.

Some progress has also been made on the theory of program testing,
based largely on the concepts in [Goodenough-Gerhart 75]. Several papers
by Hamlet, Richardson, and Ostrand and Weyuker in the recent IEEE
Workshop on Software Testing and Test Documentation [Miller et al 79]
explored further the concepts of test validity and test reliability, with use-
ful results in terms of improving test strategies. Some new approaches
with both theoretical and practical interest have also been formulated:
domain-testing [Cohen-White 77] and program mutation [De Millo et al. 78],
A valuable discussion of these issues and techniques can be found in
[Goodenough 79] and the counterpoint discussions of this article by Ger-
hart, Budd et al., and White et al. in [Wegner 79].

Considerable progress has been made in empirical studies of program
testing and verification. A number of highly useful studies by Howden have
established at least some initial results on the relative error-detection efficacy
of various testing and analysis methods [Howden 77,78]. When these

methods were tried on a common sample of programs containing 28 errors,
they detected the following number of the 28 errors:

Path Testing - 18
Branch Testing - 6
Structured Testing - 12
Special Values - 1 '7

Symbolic Execution - 17
Intei'face Analysis - 2
Anomaly Analysis - 4
Specification Requirements- 7

In the area of software reliability estimation, a valuable study of the
predictive performance of several techniques has been performed by [Sukert
78]. This study showed that the predictions were generally not very close
to the actual data, and also highly sensitive to such features as the sam-
pling interval and the time of sampling initiation. This behavior is most
likely due to the failure of the independence assumption underlying the
prediction models, as the actual error data was strongly conditioned by the
sequence of test objectives pursued during the various test phases. Some
much more successful predictions of software reliability have been obtained
in [Musa '79]. One strong contributing factor is that the e r r o r data come
from such contexts as trouble reports on a steady-state timesharing system,
where the independence assumption is more valid.

Finally, two extremely helpful books have been published by.Myers
in the area of software testing and reliability [Myers 76, Myers 79], contain-
ing a great deal of useful practical guidance in achieving reliable software.

5. SOFTWARE MAINTENANCE

Thanks to a recent survey [Lientz-Swanson 78] of 487 business data
processing installations, we now have a clearer picture of some of the gross
characteristics of software maintenance. The survey confirmed that mainte-
nance costs outweigh development costs: the percentages of total software
effort break down as follows:

Development : 43%
Maintenance : 49%
Other : 8%

Figure 4 shows how the maintenance effort is typically distributed.
The largest component is due to updates (41.8%), but significant percentages
are due to software repair (21.'7%), and accommodating changes to input
data and files (177.4%). This last activity thus consumes almost 9% of the
total software budget, but it is difficult to identify much that is being done
in the area of R&D to improve the process.

EMERGENCY
PROGRAM FIXES

ROUTINE
DEBUGGtND

ADDOM CNANGES TO
INPUT DATA. FILES

ACCOM CHANGES TO
HARDWARE. OS

ENHANCEMENTS
FOR USERS

IMPROVE
DOCUMENTATION

IMPROVE CODE
EFFICIENCY

OTHER

~ 6 . 2

17.4

LIENTZ - SWANSON
10~W*~ A SURVEY. 1978
4,87 INSTALLATIONS

i41,8

5.5

~ 4 . 0

3.4

I I I I
~0 2o 30 40

PERCENT OF SOFTWARE MAINTENANCE EFFORT

Figure 4. Distribution of Software Maintenance Effort

The most significant methodological advance to aid in designing for
maintainability is the work on designing for extension and contraction in

17

[Parnas 78, 79]. Some useful maintainability design checklists and stan-
dards are given in [Lipow et aI 77], and a good set of maintainability
management guidelines is presented in [Munson 78]. Still, the software
maintenance area is greatly underemphasized in current R&D effor1:s.

RECENT DEVELOPMENTS: INTEGRATED APPROACHES

This section of the paper discusses recent developments in areas
which integrate program engineering concerns with other concerns such as
human relations and software economics.

Software Psychology and Human Factors

The first major advance in software psychology was Weinberg's
excellent book The Psychology o f Computer Programming [Weinberg 71].
Subsequent work [Weinberg 72] established a significant correlation between
components of programmer performance and the objectives that program-
mers are given to optimize. More recently, some very useful insights into
programmer motivation were obtained in [Couger-Zawacki 78], which
showed that data processing personnel are significantly different from other
classes of workers in the strength of their growth need and the weakness
of their social need. (One moral: promoting top programmers into manage-
ment is more likely to invoke the Peter Principle.) Other similar insights
are given in [Fitz-Enz 78].

More and more useful studies are being performed on correlates of
human performance in software situations, such as the complexity-measure
experiments in [Sheppard et al. 79], the database query experiments in
[Schneiderman 78], and the language experiments in [Gannon-Homing75].
Some very helpful studies and guidelines for engineering the software man-
machine interface are discussed in [Dzida et al. 78] on interactive system
design features, [Gilb-Weinberg 77] on humanized data entry via keyed
input, and [Meister 76] on general man-machine task structuring. A good
bibliography of progress in the field is [Atwood et al. 79]. An even better
general reference will be the upcoming software psychology textbook
[Schneiderman 79].

Software Phenomenology and Economics

The general quantitative study of software phenomenology has been
the subject of two highly productive recent workshops]Lehman 77, Basili
78] covering such areas as software cost modeling; measurement of soft-
ware reliability, complexity, and other qualities; quantitative software
psychology studies; software maintenance phenomena; and general prob-
lems of software data collection and analysis.

One trend observable from these workshops and related studies is a
significant degree of progress in the area of software cost estimation. Some
examples Df cost estimation models with improved predictive capability
based on their calibration to at least 20 project data points each are the
multiplicative Dory model [Herd et al. 77) and IBM-FSD model [Felix-
Walston 77]; the Rayleigh curve-based Putnam model [Putnam 78]; and
the composite RCA PRICE S model [Freiman-Park 79] and TRW SCEP
model [Boehm-Wolverton 78]. Each of these efforts has resulted not just
in a model but also in an increased understanding of the major factors
influencing software costs, and their distribution across the various soft-
ware life-cycle phases and activities.

Two examples of the latter are shown in Figures 5 and 6, which
summarize the results of an experiment recently conducted by the author,
involving the development of the same small software product (an interac-
tive software cost estimation model) by two 5-6 person teams. Figure 5
shows the distribution of the resulting lines of code by function. The
results for the two products are quite similar; in particular, note that only
2-3% of the code actually implements the model: the other (.)7-98% is
devoted to various user interface, error handling, declaration, and other
housekeeping functions. Figure 6 shows the distribution of project effort
by activity, based on timesheets filled out by the participants. The distri-
bution tends to reinforce the thesis that software engineering involves a

good deal more than programming, which consumed only 9-10% of the
project's effort.

3O

Z .~ 20

,o

SUMMARY OF "TWO P R ODIIJCTS DEVELOPED TO SAME BASIC SPECI FICATION (SMALL, INTERACTIVE SOFTWARE COST MODEL)

~\\ \~ PROJECT 1

~ ~ ~ ~ ~ ~ ~ Y J / J J J ' ~ J PROJECT 2 1

MODEL USER USER CONTROL HELP ERROR MOVING DATA COMMENTS CALC INPUTS O~tJ'TPUTE MS(3 PROC DATA DECL., PRC¢ AROUND FORMALS5

Figure 5. What Does a Software Product Do? Distribution of Source Code
by Function

SUMMARY OF TWO TEAMS DEVELOPING PRODUCT TO SAME BASIC SPECIFICATION {SMALL, INTERACTIVE SUF'nNARE COST MODEL)

25

~, 20

z

READING PLANNING DE- PROGRAM-DOCUMEN- TESTING RE * FIXING MEETING MISC.;EL- SIGNING MING TING VIEWING LANEOU~
ACTIVITIES

Figure 6. What Does a Software Project Do?? Distribution of Project Time
by Activity

Other significant contributions in this area include the analysis of
RADC's large software data base of over 300 projects [Nelson 77] to
obtain strong correlations between software project effort and schedule and
software product size in number of instructions; the software evolution
dynamics studies summarized in [Belady-Lehman 79] ; and the encyclopedic
analysis of general data processing costs and economics in [Phister 76].

CONCLUSIONS

In 1976, the software engineering field seemed to be preoccupied with
what I called at the time Area I: detailed design and coding of systems
software by experts in a relatively economics-independent context; while
the most pressing problems seemed to be in Area 2: requirements analysis~
design, test, and maintenance of applications software by technicians in an
economics-driven context. It is a real pleasure to observe that in 1979
there is not only a good deal more effort devoted to Area 2, but also that
the effort is yielding highly useful and solid results.

Other signs of the increased maturity and sophistication of the
field are the more careful qualifications and distinctions made in presenting

18

and analyzing software engineering techniques today. A few years ago, the
field seemed to abound with simplistic panaceas such as:

• "Proof techniques will guarantee reliable software."

• "Put the processing on a chip and the software problem will go
away."

• "More detailed standards and procedures will make everybody
good software managers."

• "Automatic programming is just around the corner, and program-
mers will all be out of jobs."

• "Eliminating GOTO's will reduce your software budget by 50%."

Nowadays, these oversimplified statements are heard very rarely, and
there is much more emphasis on establishing the particular problem domains
in which a given technique is effective or preferable to others. This has
forced us to accept the fact that the software field is not a simple one, and
that if anything, it is getting more complex at a faster rate than we can
put it in order. But I suspect that most of us would agree with Bill Wulf's
assessment of this trend [Wulf 79] :

"The research trends described]here] will undoubtedly improve
the situation, but history suggests that our aspirations will
grow at least as fast as the technology to satisfy them. I, for one,
would not want it any other way."

REFERENCES

[Alford 77]. M. W. Alford, "A Requirements Engineering Methodology for
Real-Time Processing Requirements," IEEE Trans. Software Engr.,
Jan. 1977, pp. 60-68.

[Alford 78]. M. W. Alford, "Software Requirements Engineering Method-
ology (SREM) at the Age of Two," Proceeding, COMPSAC 78, IEEE,
Nov. 1978, pp. 332-339.

[Atwood et al.79]. M. E. Atwood et al., "Annotated Bibliography on
Human Factors in Software Development" U.S.. Army ARI Tech-
nical Report P-79-1, Jun. 1979.

[Baker 75]. F. T. Baker, "Structured Programming in a Production Pro-
gramming Environment," IEEE Trans. Software Engr., Jun. 1975,
pp. 241-253.

[Balzer et al. 77]. R. Balzer, N. Goldman, and D. Wile, "The Inference of
Domain Structure from Informal Process Descriptions," ACM
SIGA R T Newsletter, J un. 1977.

[Basili 78]. V. R. Basil (ed), Proceedings, Second Software Life-Cycle
Management Workshop, IEEE Catalog No. 78CH 1390-4C, Aug.
1978.

[Belady-Lehman 79]. L. A. Belady and M. M. Lehman, "Characteristics
of Large Systems," in [Wagner 79].

[Bell et al. 77]. T. E. Bell, D. C. Bixler, and M. E. Dyer, "An Extendable
Approach to Computer-Aided Software Requirements Engineering,"
IEEE Trans. Software Engr., Jan. 1977, pp. 49-59.

[Berson-Barksdale 79]. T. A. Berson and G. L. Barksdale, Jr., "KSOS-
Development Methodology for a Secure Operating System," Pro-
ceedings, 1979 NCC, pp. 365-371.

[Boehm et al. 75]. B. W. Boehm, R. L. McClean, and D. B. Urfrig, "Some
Experience with Automated Aids to the Design of Large Scale Relia-
ble Sdftware," IEEE Trans. Software Engr., Mar. 1975, pp. 125-133.

[Boehm 76]. B. W. Boehm, "Software Engineering," IEEE Trans Com-
puters, Dec. 1976, pp. 1226-1241.

[Boehm-Wolverton 78]. B.W. Boehm, and R. W. Wolverton, "Software
Cost Modeling: Some Lessons Learned," in [Basili 78].

[Brinch Hansen 77]. P. Brinch Hansen, The Architecture of Concurrent
Programs, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

[Brinch Hansen 78]. P. Brinch Hansen, "Network: A Multiprocessor Pro-
gram," IEEE Trans. Software Engr., May 1978, pp. 194-198.

[Bryant-Dennis 79]. R. E. Bryant and]. B. Dennis, "Concurrent Program-
ming," in P. Wagner (ed), Research Directions in Software Tech-
nology, MIT Press, 1979.

[Caine-Gordon 75]. S.H. Caine and E.K. Gordon, "PDL: A Tool for
Software Design," Proceedings, 1975 NCC, pp. 271-276.

[Climis 79]. T. Climis, "Software Cost Estimation," presentation at NSIA
Software Workshop, Buena Park, CA, Feb. 1979.

]Cohen-White 77]. E. 1. Cohen and L. J. White, "A Finite Domain-Testing
Strategy for Computer Program Testing," Ohio State Univ. TR-77-13,
Aug. 1977.

[Couger-Zawacki 78]. J. D. Cougar and R. A. Zawacki, "What Motivates
DP Professionals?" Datamation, Sap. 1978, pp. 116-123.

[DeMarco 78]. T. DeMarco, Structured Analysis and System Specification,
Yourdon Press, New York, 1978.

[D=Millo et al. 78]. R. A. DeMillo, R. J. Lipton, and F. E. Sayward, "Hints
on Test Data Selection: Help for the Practicing Programmer," Com-
puter, Apr. 1978, pp. 34-41.

[DeMillo et al. 79]. R. A. DeMillo, R.J. Lipton, and A.]. Perils, "Social
Processes and Proofs of Theorems and Programs," Carom ACM,
May 1979, pp. 271-280.

[Dijkstra 75]. E. W. Dijkstra, "Guarded Commands, Nondeterminacy, and
Formal Derivation of Programs," Carom ACM, Aug. 1975.

[Dijkstra 76]. E.W. Dijkstra, A Discipline of Programming, Prentice-Hall
Inc., Englewood Cliffs, N J, 1976.

[Dzida et al. 78]. W. Dzida, S. Herda, and W. D. Itzfeldt, "User-Perceived
Quality of Interactive Systems," IEEE Trans. Software Engr.,]ul.
1978, pp. 270-275.

[Fairley 79]. R. E. Fairley, "MSE-79: A Recommended Masters Curricu-
lum in Software Engineering," Colorado State Univ., Feb. 1979.

[Feiertag-Neumann 79]. R. J. Feiertag and P. G. Neumann, "The Founda-
tions of a Probably Secure Operating System (PSOS)," Proceedings,
1979 NCC, pp. 329-334.

[Felix-Walston 77]. C. P. Felix and C. E. Walston, "A Method of Program-
ming Measurement and Estimation," IBM Sys]. Vol. 16, No. 1,
1977.

[Fisher 77]. D.A. Fisher, "The Common Programming Language of the
Department of Defense," Proceedings, AIAA/NASA/IEEE/ACM
Computers in Aerospace Conference, Oct. 1977, pp. 297-307.

[Fitz-Enz 78]. J. Fitz-Enz, "Who Is the DP Professional?" Datamation,
Sap. 1978, pp. 124-129.

[Freeman-Wasserman 77]. P. Freeman and A.I . Wasserman, Tutorial on
Software Design Techniques (2nd ed), IEEE Catalog No.
76CH1145-2-C, 1977.

[Freiman-Park 79]. F. R. Freiman and R. E. Park, "The PRICE Software
Cost Model," RCA Price Systems, Cherry Hill, N J, Feb. 1979.

[Gannon-Horning 75]. J. D. Gannon, and J.]. Homing, "Language Design
for Programming Reliability," IEEE Trans. Software Engr., J un. 1975,
pp. 179-191.

[GAO77]. U.S. General Accounting Office, "Problems Found with Govern-
ment Acquisition and Use of Computers from November 1965 to
December 1976," GAO, Washington, DC, Report FGMSD-77-14,
Mar. 1977.

[Gerhart-Yelowitz 76]. S. L. Gerhart and L. Yelowitz, "Observations of
Fallibility in Applications of Modern Programming Methodologies,"
IEEE Trans. Software Engr., Sep. 1976, pp. 195-207.

[Gerhart-Wile 79]. S. L. Gerhart and D. S. Wile, "Preliminary Report on
the Delta Experiment: Specification and Verification of a Multiple

t9

User File Updating Module," Proceedings, Specifications of Reliable
Software Conference, IEEE, Mar. 1979, pp. 198-211.

[Gilb-Weinberg 77]. T. Gilb and G. M. Weinberg, Humanized Input, Win-
throp, Inc., Cambridge MA, 1977.

[Goodenough-Gerhart 75]. J. B. Goodenough and S. L. Gerhart, "Toward
a Theory of Test Data Selection," IEEE Trans. Software Engr.,
Jun. 1975, pp. 156-173.

[Goodenough 79]. J. B. Goodenough, "A Survey of Program Testing
Issues," in P. Wegner (ed), Research Directions in Software Tech-
nology, M IT Press, 1979.

[GrJes 76]. D. Gries, "An Illustration of Current Ideas on the Derivation
of Correctness Proofs and Correct Programs," IEEE Trans. Software
Engr., Dec. 1976, pp. 238-243.

[Hamilton-Zeldin79]. "The Relationship of Design and Verification,"
Journal of Systems and Software, Vol. 1, No. 1, 1979.

[Herd et al. 77]. J. R. Herd et al., "Software Cost Estimation Study -
Study Results, RADC-TR-77-220, Vol. I, Jun. 1977.

[Heninger et al. 78]. K. Heninger, J. Kallander, D. L. Parnas, and J. Shore,
Software Requirements for the A-7E Aircraft, Naval Research Lab-
oratory Report 3876, Nov. 1978.

[Heninger79]. K. Heninger, "Specifying Software Requirements for
Complex Systems: New Techniques and Their Application," Pro-
ceedings, Specifications of Reliable Software Conference, IEEE,
Mar. 1979, pp. 1-14.

[Hoare 78]. C.A.R. Hoare, "Communicating Sequential Processes,"
Comm. ACM, Aug. 1978, pp. 666-677.

[Hosier 61]. W. A. Hosier, "Pitfalls and Safeguards in Real-Time Digital
Systems with Emphasis on Programming," IRE Transactions on
Engineering Management, Jun. 1961, pp. 99-115.

[Howden 77]. W. E. Howden, "Symbolic Testing - Design Techniques,
Costs, and Effectiveness," NBS Report GR 77-89, NTIS No.
PB268517, 1977.

[Howden 78]. W. E. Howden, "Theoretical and Empirical Studies of
Program Testing," IEEE Trans. Software Engr., Jul. 1978, pp.
293-298.

[Ichbiah et al. 79]. J. D. Ichbiah et al., "Rationale for the Design of the
ADA Programming Language" and "Preliminary ADA Reference
Manual," ACM SIGPLAN Notices, Jun. 1979.

[Jackson 75]. M.A. Jackson, Principles of Program Design, Academic
Press, 1975.

[Lamb et al. 78]. S. S. Lamb, V.G. Lack, L.J. Peters, and G. L. Smith,
"SAMM: A Modeling Tool for Requirements and Design Specifica-
tion," Proceedings, COMPSAC 78, I EEE, Nov. 1978, pp. 48-53.

[Lehman 77]. M. M. Lehman (ed), Software Phenomenology. Proceedings,
U.S. Army Software Life Cycle Management Workshop, Aug. 1977.

[Lientz-Swanson 79]. B. P. Lientz and E. B. Swanson, "Software Mainte-
nance: A User/Management Tug-of-War," Data Management, Apr.
1979, pp. 26-30.

[Lipow et al. 77]. M. Lipow, B. B. White, and B.W. Boehm, "Software
Quality Assurance: An Acquisition Guidebook," TRW-SS-77-07,
Nov. 1977.

[Liskov-Berzins 79]. B. H. Liskov and V. Berzins, "An Appraisal of Pro-
gram Specifications," ;n P. Wagner (ed), Research Directions in Soft-
ware Technology, MIT Press, Cambridge, MA, 1979.

[London 79]. R. L. London, "Program Verification," in P. Wagner (ed),
Research Directions in Software Technology, M IT Press, 1979.

iMages 78]. C. S. Magers, "Managing Software Development in Micro-
processor Projects," Computer, J un. 1978, pp. 34-42.

[Meister 76]. D. Meister, Behavioral Foundations of System Development,
John Wiley and Sons, New York, 1976.

[Miller et al. 79]. E. Miller et al., "Workshop Report: Software Testing
and Test Documentation," Computer, Mar. 1979, pp. 98-107.

[Munson 78]. J. B. Munson, "Software Maintainability: A Practical
Concern for Life-Cycle Costs," Proceedings, COMPSAC 78, Nov.
1978, pp. 54-59.

[Musa 79]. J. D. Musa, "Software Reliability Measures Applied to System
Engineering," Proceedings, 1979 NCC, pp. 941-946.

[Musser79]. D. R. Musser, "Abstract Data Type Specifications in the
Affirm System," Proceedings, Specifications of Reliable Software
Conference, IEEE, Mar. 1979, pp. 47-57.

[Myers 75]. G. J. Myers, Reliable Software Through Composite Design,
Petrocelli-Chanter, 1975.

[Myers76]. G.J. Myers, Software Reliability, John Wiley and Sons,
New York, 1976.

[Myers 79]. G.]. Myers, The Art of Software Testing, John Wiley and
Sons, New York, 1979.

]Nelson 77]. R. Nelson, "Software Data Collection and Analysis at
RADC," Rome, NY, 1977.

[Parnas 78,79]. D. L. Parnas, "Designing Software for Ease of Extension
and Contraction," Proceedings, ICSE3, May 1978, pp '264-277, and
IEEE Trans. Software Engr., Mar. 1979, pp 128-I 37.

[Phister 76]. M. Phister Jr., Data Processing Technology and Economics,
Santa Monica Publishing Co., 1976.

[Putnam 78]. L. H. Putnam, "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem," IEEE Trans. Software
Engr., Jul. 1978, pp. 345-361.

[Ramamoorthy-So 78]. C.V. Ramamoorthy and H.H. So, "Software
Requirements and Specifications: Status and Perspectives," in
C. V. Ramamoorthy and R. T. Yeh, Tutorial: Software Methodology,
IEEE Catalog No. EHO 142-0, 1978, pp. 43-164.

[Ramsay et al. 78]. H. R. Ramsay, M. E. Atwood, and J. R. Van Doren, "A
Comparative Study of Flowcharts and Program Design Languages for
the Detailed Procedural Specification of Computer Programs," U.S.
Army ARI Technical Report TR-78-A22, Sep. 1978.

[Rauscher 78]. T. G. Rauscher, "A Unified Approach to Microcomputer
Software Development," Computer, Jun. 1978, pp. 44-54.

[Ross-Schoman 77]. D.T. Ross and K. E. Schoman Jr., "Structured Analy-
sis for Requirements Definition," IEEE Trans. Software Engr., Jan.
1977, pp 6-15.

[Roubine-Robinson 77]. O. Roubine and L. Robinson, SPECIAL Refer-
ence Manual, SRI International, Menlo Park, CA, Jan. 1977.

[Shaw 64]. J.C. Shaw, "JOSS: A Designer's View of An Experimental
On-Line Computing System," Proceedings, 1964 FJCC, pp. 455-464.

[Sheppard et al. 79]. S.B. Sheppard, B. Curtis, P. Milliman, M. A. Borst,
and T. Love, "First-Year Results from a Research Program On Human
Factors in Software Engineering," Proceedings, 1979 NCC,
pp. 1021-1028.

[Shneiderman 78]. B. Shneiderman, "Improving the Human Factors
Aspect of Database Interactions" ACM Trans. Database Systems,
Dec. 178, pp. 417-439.

[Shneiderman 79]. B. Shneiderman, Software Psychology, Prentice-Hall,
Inc., Englewood Cliffs, N J, 1979 (to appear).

[Stankovic-van Dam 79].]. A. Stankovic and A. van Dam, "Research
Directions in (Cooperative) Distributed Processing," in P. Wagner
(ed), Research Directions in Software Technology, M IT Press, 1979.

[Stepczyk78]. F. Stepczyk, "A Case Study in Real-Time Distributed
Processing Design," Proceedings, COMPSAC 78, Nov. 1978, pp.
514-519.

[Sukert 78]. A. N. Sukert, "A Four-Project Empirical Study of Software
Error Prediction Models," Proceedings, COMPSAC 78, Nov. 1978,
p~;. 577-582

[Teichroew-Hershey 77]. D. Teichroew and E. A. Hershey III, "PSL/PSA: .
A Computer-Aided Technique for Structured Documentation and

20

Analysis of Information Processing Systems," IEEE Trans. Software
Engr., Jan. 1977, pp. 41-48.

[Thayer et al. 79]. R. H. Thayer, A. Pyster, and R. C. Wood, "Major Issues
in Software Engineering Project Management," Sacramento Air
Logisitics Center, May 1979.

[Warnier74]. 1. D. Warnier, Logical Construction of Programs, Van
Nostrand Reinhold, New York, 1974.

[Webster 79]. Webster's New Collegiate Dictionary, G&C Merriam Co.,
1979.

[Wegner 79]. P. Wagner (ed), Research Directions in Software Technology,
MIT Press, Cambridge, MA, 1979.

[Weinberg 71]. G. M. Weinberg, The Psychology of Computer Program-
ming, Van Nostrand Reinhold, New York, 1971.

[Weinberg72]. G. M. Weinberg, "The Psychology of Improved Program-
ming Performance," Datamation, Nov. 1972.

[Wirth 71]. N. Wirth, "The Programming Language Pascal," Acta Infor-
matica, 1971, pp. 35-63.

[Wulf 79]. W. A. Wulf, "Comments on Current Practice," in [Wagner 79].

[Yourdon 75]. E. Yourdon, Techniques of Program Structure and Design,
Prentice-Hall, 1975.

[Yourdon-Constantine 78]. E. Yourdon and L. L. Constantine, Structured
Design, (2nd ed), Yourdon Press, New York, 1978.

2't

