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SUMMARY AND ABSTRACT 

This paper presents a view of software engineering as it is in 1979. I t  
discusses current software engineering practice with respect to lessons 
learned in the past few years, and concludes that the lessons are currently 
not heeded roughly half of the time. The paper discusses some of the 
factors which may account for this lag, including rapid technological change, 
education shortfalls, technology transfer inhibitions, resistance to disci- 
plined methods, inappropriate role models, and a restricted view of software 
engineering. 

The paper also updates a 1976 state of the art survey of software 
engineering technology, including such topics as requirements and specifi- 
cations, design, programming, verification and validation, maintenance, 
software psychology, and software economics. It concludes that the field 
is making solid progress, but that it is growing more complex at a faster 
rate than we can put it in order. 

SOME SOFTWARE ENGINEERING LESSONS LEARNED 

Recently, I reviewed a paper which succinctly summarized many of 
the software engineering lessons we have (hopefully) learned over the past 
few years. Here are some excerpts: 

1. Testable Requirements 

"As soon as specifications for a system program are definitive, con- 
tractors should begin to consider how they will verify the program's meeting 
of the specifications. In fact, they should have had this in mind during the 
writing of the specifications, for it is easy to write specifications in such 
terms that conformance is impossible to demonstrate. For example: 'The 
program shall satisfactorily process all input traffic presented to it.' " 

2. Precise Interface Specifications 

"The exact interpretation of digital formats, the rise and fall times of 
waveforms, special restrictions as to ~vhen each type of data may or may not 
be sent - these and sundry other details must be agreed on by all parties 
concerned and clearly written down. Accomplishing this is apt to be a 
monumental and tedious chore, but every sheet of accurate interface defi- 
nition is, quite literally, worth its weight in gold." 

3. Early Planning and Specification 

"If  management takes the casual list-on-paper at~titude toward a 
computer program, the consequence will be procrastination of complete 
program specification, followed by disbelief and consternation when lack 
of a proper program delays the whole system." 

4. Lean Staffing in Early Phases 

"The designers should not be saddled with the distracting burden of 
keeping subordinates profitably occupied . . . .  Quantity is no substitute for 
quality; it will only make matters worse." 

5. Core and Time Budgeting 

"Budgets of time and storage, as mentioned earlier, should be set 
up, and monthly or more frequent reports are advisable on how well they 
are being adhered to . . . .  [For storage budgets, include] . . .  a safety factor 
of 25% or more, depending on the estimator's self-confidence and the 
likelihood of expansion in program requirements (they always expand)." 

6. Careful Choice of Language 

"Choosing a ]Higher Order Language], like choosing a wife, is hard 
to undo after getting involved, and is not to be taken lightly." 

7. Objective Progress Monitoring 

"Percent-of-completion estimates will be asked for, and unless tasks 
are defined with unusual care, figures will be difficult to arrive at or decid- 
edly misleading." 

8. Defensive Programming 

"Programmers should be imbued with the doctrine of anticipating 
possible troubles and detecting or correcting them [in their program] ." 

9. Integration Planning and Budgeting 

"A common error in planning production of a program is to under- 
estimate the time needed to combine units after they have been coded." 

10. Early Test Planning 

"Program acceptance tests should be defined early enough for contem- 
plated acceptance-test inputs to be used in the terminal stages of program 
checkout." 
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HOW WELL HAVE THE LESSONS BEEN LEARNED? 

Let us compare the above lessons learned with some samples of cur- 
rent software engineering practice gathered from a set of 50 term papers 
from a software engineering course I gave at USC earlier this year. The 
examples are drawn from recent government, industry, and university soft- 
ware projects in the Los Angeles area, and should form a reasonably repre- 
sentative sample of "Software. Engineering, As It Is" as seen by the working- 
level software engineer. 

1. Testable Requirements 

"A requirements spec was generated. It has a number of untestable 
requirements, with phrases like 'appropriate response' all too common. The 
design review took weeks, yet still retained the untestable requirements." 

"The only major piece of documentation written for the project was 
a so-called specification. Actually, the specification was written after the 
program was completed and looked more like a user's manual." 
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2. Precise Interface Specifications 

"No one had kept proper control over interfaces, and the require- 
ments specs were still inexact." 

"The interface schematics were changed over the years and not 
updated, so when we interfaced with the lines, fuses were burned, lights 

wont out . . .". 

"The interface between the two programs was still not exact. When 
interfacing the two programs we ran into run time errors. Debugging was 
difficult because of the lack of documentation. We also began to forget 
exactly what our code did in certain situations and wished we had done 
more documentation." 

3. Early Planning and Specification 

"Despite one team member's efforts to develop a plan and some 
interface specs, the other two members felt there was no time or need to 
plan anything, and that each member should begin coding to complete the 
project on time. In fact, this did not save time, but caused many problems 
and delays." 

"A  software development plan was thrown together at the customer's 
request. It contained such good words as 'structured programming,' 'chief 
programmer team,' 'structured walkthroughs,' etc. This plan has been 
ignored since its creation, both by the project manager and the software 
head." 

"This is all common sense, yet I know of no R&D minicomputer 
installation that uses a formal documentation procedure. It is with surprise 
that an engineer finds that paperwork can actually save time." 

4. Lean Staffing in Early Phases 

"A t  an early stage in the design, I was made the project manager and 
given three trainees to help out on the project. My biggest mistake was to 
burn up half of my time and the other senior designer's time trying to keep 
the trainees busy. As a result, we left big holes in the design which killed 

us in the end." 

5. Core and Time Budgeting 

"The core size is already three times the budget, and is running over 
the 90% mark. Two-thirds of the program is running from slow memory, 
making the execution time well over budget as well." 

"This machine had a limited core size which resulted in much trickery 
and use of machine-dependent techniques in order to get the program to 
f i t . "  

"Lit t le planning was done, and the estimates of what the software 
development would entail were arbitrarily cut by the first project manager." 

6. Careful Choice of HOL 

"Although two other computer systems were clearly better as a host 
for our upgrade, we were locked into Brand X because of the huge inventory 
of code we had written in a Brand X-oriented HOE"  

7. Objective Progress Monitoring 

"Monthly status reports saying X% complete were given to the cus- 
tomer. As predicted in the text, the 50% mark tended to get reported as 
90% complete." 

8. Defensive Programming 

"The programmer was a victim of the sad illusion that if the users 
were given a set of rules for entering the data, they would enter the data 
correctly. She had not even dreamed of the things users could do to destroy 
the database." 

"The program is not very guarded. In an effort to save money, several 
types of error checking proposed were eliminated." 

9. Integration Planning and Budgeting 

"No integration plan has been constructed, nor have configuration 
management procedures been established." 

10. Early Test Planning 

"The acceptance test was a disaster. The users got into some of the 
exotic options and everything blew up. After that, we had a hard time 
getting them to believe anything we said about the system. There was no 
test planning - we just rushed into it blind." 

11. Software Standards: General 

"The design was not in modules, making it impossible to extend the 
use of the program. It was easier to write a new program than modify or 
correct the existing one." 

"Rather than attempt to restructure the particular area that is being 
worked on, most of the programmers insert "patches" that cause the flow 
of control to snake around so that it is nearly impossible to try to follow 
the logic." 

12. Software Management: General 

"Morale dropped to such a low level that we were no longer a team. 
Deadlines were not met, interfaces did not work, programs did not f i t  
requirements, and people quit." 

To be fair, I should point out that the above excerpts are not a fully 
representative sample of the project experiences cited in the term papers. 
There were about an equal number of positive experiences in which people 
had evidently learned the lessons identified above and applied them 
successfully. 

HOW SOON WILL WE LEARN THESE SOFTWARE 
ENGINEERING LESSONS?? 

Still, a 50% rate of applying these lessons is not very acceptable. I t  
would certainly appear that the paper quoted above speaks directly to the 
current problems faced by software engineering practitioners. Its advice is 
timely, topical, and evidently much-needed today. I t  would appear, for 
example, to be a good candidate for the Proceedings of this Conference. 

Unfortunately, the paper has already been published. In 1961. 

It is "Pitfalls and Safeguards in Real-Time Digital Systems with 
Emphasis on Programming," by W.A. Hosier. It appeared in the IRE 
Transactions on Engineering Management in June, 1961. I t  is based on the 
software engineering experiences accumulated on the U.S. SAGE amd 
BMEWS command and control projects in the late 1950's. In the software 
engineering field, I would recommend everyone reading it, for two main 
reasons: 

Although parts of the paper are a bit dated, most of its advice is 
still very good and well-expressed. (Perhaps the most striking 
anachronism in the world of 1979 is the statement that choosing 
a wife is hard to undo.) 
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2. I would hope that, in reading it, you would find yourself both- 
ered, as I was, by the question: 

" I f  we knew all those things 18 years ago, why aren't we doing 
them now?" 

I think this question is worth exploring, as its answers are certainly 
relevant to the topic question: "How soon will we learn these software 
engineering lessons?" In particular, the next section will discuss some likely 
reasons why our progre.ss has been slow in assimilating software engineering 
techniques, and consider ways that we might be able to speed up the process. 

SOME FACTORS INHIBITING GENERAL PROGRESS IN 
SOFTWARE ENGINEERING PRACTICE 

Here are six factors which I believe are inhibiting our general progress 
in software engineering practice: 

1. The field is growing rapidly. 

2. We aren't teaching many of  the above lessons to students. 

3. Technology transfer is slow. 

4. We resist the required discipline. 

5. We have our role models mixed up. 

6. We often take a restricted view of  software engineering. 

I .  The Field Is Growing Rapidly 

Our software engineering techniques have to be reexamined every 
time we are confronted with a significant change in the computer tech- 
nology we work with. Although we generally find (as with microprocessors) 
that the general principles of  software engineering still apply [Rauscher 
78, Magers 78], we find that some techniques (e.g. instrumentation and test 
techniques) need to be modified to f i t  the new technology. There is not 
much that we can or want to do to eliminate this source of  problems. 

The field is also growing rapidly in terms of  the number o f  people 
assimilated per year, who must necessarily relearn many software engineer- 
ing lessons for themselves. We should be able to improve our status here via 
education, as discussed below. 

2. We Aren't Teaching Many of  the Above Lessons to Students 

A recent survey [Thayer et al. 79] of  software engineering instruc- 
tion found large discrepancies between what professors felt were critical 
software engineering issues and what was being covered in software engineer- 
ing courses. Of 20 major issues, only two (plan for maintainability and con- 
trol quality) were covered to the extent commensurate with the issue's 
criticality. The other 18 issues (e.g., plan requirements, plan project, plan 
test, control visibility) have a very high correlation with the issues dis- 
cussed above, but were under-covered in current courses. 

The main reasons given for not covering those issues more were: 

- lack of  expertise 
- lack of  texts and other teaching materials 
- inappropriate for computer science departments 

Hopefully, recognition of  the first two reasons will lead to activities to fill 
the needs expressed. The third reason was given by some professors who 
felt that such management-oriented material belonged in the business 
school. However, none of  the business schools were teaching such material, 
either. 

Our University education does best when it teaches people funda- 
mentals: concepts and approaches which will serve the student through his 
entire practicing career. Speaking personally, I would have been helped 
much more in my overall software engineering career by a course on how to 
apply Hosier's lessons learned, or by a course on software economics, than 
I have been by course material I had on optimal sorting on a 2-tape machine 
with a poorly buffered memory, or on predicting the growth of  truncation 
errors on machines with poorly designed arithmetic units, l 'm not sure that 
today's microprocessor courses on how to hack around the problems in 
the Cromemco loader are much better from the standpoint o f  teaching 
fundamentals. Thus, I think that a reasonable argument can be made that 
the topics above are appropriate for computer science departments. 

Good progress is being made by the IEEE/CS Subcommittee on Soft- 
ware Engineering Education toward defining a Master's curriculum in soft- 
ware engineering [Fairley 79].  However, progress in implementing the 
curriculum is slow. At  this writing, only one University (TCU, under A. J. 
Hoffman) has, to my knowledge, actually established a formal Masters 
degree in software engineering. 

3. Technology Transfer is Slow 

Over the past few years, I have been able to observe some of the 
ways in which software engineering technology is transferred into a la, ge 
industrial organization such as TRW. The "technology transfer measuring 
stick" shown in Figure I is one attempt to characterize what it is that makes 
such an organization adopt a new technology item. I f  a paper is published 
which simply presents an idea which addresses a significant problem, the 
idea may be picked up and used, but rarely. (Sometimes we have done 
this, only to find that even the originator had subsequently discarded the 
idea, although not as publicly as it was presented.) In general, software 
development people want to be assured that the idea has worked success- 
fully in practice, on a job similar to theirs, and (ideally) by people who are 
available to apply it to their project. 
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Figure 1. Research Results: A Measuring Stick for Successful Technology 
Transfer 

This ideal is not always feasible, but in reviewing software engineer- 
ing contributions which have been picked up most readily at TRW, they 
tend to cluster at the higher end of  the measuring stick in Figure I .  Some 
examples are top-down structured programming [Baker 75],  Pascal [Wirth 
71],  ISDOS [Teicheroew-Hershey 77],  PDL [Caine-Gordon 75],  Concur- 
rent Pascal [Brinch-Hansen 77],  and Parnas' specification and design tech- 
niques [Parnas 78, 79; Heninger et al. 78]. 
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I have found that the best way to judge whether a paper is at the 
higher or lower end of the technology transfer scale is to look at its conclu- 
sions. I f  they say something like, 

"This technique has been implemented and found superior to 
other techniques for the following classes of problems: . . . "  

then the contribution will tend to be at the top of the scale. I f  the conclu- 
sions say something like, 

"Although this technique has not been implemented, the 
author believes.. " 

or i f  the paper has no conclusions at all, then the contribution will tend to 
be at the bottom of the scale. We can all help to improve technology trans- 
fer by moving our contributions higher up the scale, even though it may 
mean publishing fewer papers. 

4. We Resist the Required Discipline 

We are beginning to accept the fact that there is "A Discipline of 
Programming" [Dijkstra 76] which requires us to accept constraints on our 
programming degrees of freedom in order to achieve a more reliable and 
well-understood product. We are reaching the point where we are willing 
to tie ourselves down by declaring in advance our variable types, weakest 
preconditions, and the like. But our free spirits still rebel at tieing our- 
selves down more fully by declaring in advance just what software we are 
going to build, how we are going to put it together, who is going to verify 
it and how, and what is the user going to do with it once he gets it. It's 
still much more attractive to jump in and start laying code. l'm afraid that 
this particular problem will be a long time in going away. 

5. We Have Our Role Models Mixed Up 

Another related factor inhibiting the progress of disciplined software 
engineering practice is something we call the "Wyatt Earp Syndrome." The 
"Wyatt Earp" is the indispensible programmer: the one who carries the 
critical program logic and design decisions around in his head, never docu- 
menting anything he does. When the inevitable crisis comes along, only he 
can save the situation, coming on like Wyatt Earp saving the town from the 
bad guys. All too often, the result is that the indispensable programmer is 
given a raise or a bonus, and becomes a hero or role model for other pro- 
grammers in the organization. And in the process, the organization has 
become even more dependent on its Wyatt Earp than it was before. 

The solution? Jerry Weinberg, a highly humanitarian person, has 
described it concisely: " I f  a programmer is indispensable, get rid of him as 
soon as possible" [Weinberg 71 ]. 

6. We Often Take A Restricted View of Software Engineering 

The engineering of large software systems is as complex as any engi- 
neering ventures in history. Even judging conservatively, a 1,000,000- 
instruction software product has at least 10,000 component functions 
(assuming 100 instructions per function), each of which can be specified 
and developed in at least two different ways. Thus, even at this function 
level, there are '210,000, or about "I 03,000, combinations of function choices 
which the software engineer must sort out*. 

When dealing with this level of complexity, it is absolutely necessary 
to simplify things to make them intellectually tractable. In doing so, we 
often take a restricted view of "software engineering" which equates it to 
"programming methodology," and then proceed to tackle our program- 
ming problems. 

Problems With the Restricted View 

This restricted view is a good thing from the standpoint of clarifying 
our approach to programming tactics. However, software projects which 
have taken this restricted view exclusively, to the exclusion of the resource 
engineering and human relations aspects of software engineering, have 
unfortunately proceeded to relearn many of the lessons discussed above. 
One order-processing software project did a beautiful job of top-down, 
deductive structured programming, only to come to grief because it had 
not spent enough effort defining the proper " top" of the system. As a result, 
the overall order-processing system was more inefficient, error prone, and 
frustrating to use than even its cumbersome manual predecessor. Another 
well-structured, modular, hierarchical real-time system failed when it 
simply would not work in real time on the user's workload - a fact that 
would have been evident by an early workload characterization and resource 
analysis of the system. 

The need for using the broad rather than the restricted view of soft- 
ware engineering is also seen in Figure 2, which summarizes the problems 
in computer system acquisition found in 151 U.S. General Accounting 
Office audits [GAO 77]. Although technology factors are a significant 
source of acquisition problems, it is clear from Figure 2 that the major 
problem sources are more in the areas of acquisition planning and project 
control. 
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Figure '2. Problems with Computer System Acquisition and Use in U.S. 
Government, 1965-1976 

Problems With the Sequential Approach 

It would be convenient if we could perform a sequential "separation 
of concerns" which neatly factored the software engineering problem into a 
"programming-methodology" problem and a separable set of problems 
which covered all other considerations. There are two basic approaches for 
doing this - the "deductive top-down" approach and the "tuning" 
approach - but unfortunately they have not worked out well in general 
practice. 

In the "deductive top-down" approach, all of the resource-engineering 
and human-relations problems are worked out in advance. The result of this 
activity is a fully-defined requirements specification, which can then be 
frozen and used as the basis of a deductive, top-down programming activity. 
Unfortunately, this approach will not work in general because of the funda- 
mental volatility of software requirements. For example, I BM's Santa Teresa 
software organization has found, on a sample of roughly 1,000,000 instruc- 
tions of software produced per year to IBM-determined requirements, that 

*Or~successful early software product JOSS [Shaw 64] was characterized 
as "I0,000 small.decisions, 99.9% of which were made correctly." 
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the average project experiences a 25% change in requirements during the 
period of its development [Climis 79]. 

The other approach is the "tuning" approach, in which the software is 
developed deductively from a first-cut set of requirements and then modified 
on the basis of user lessons learned in the meantime. Unfortunately, this 
approach will not work in general because of the inertia of user organiza- 
tions. Once an initial software product is put into operation (however 
inappropriate), users tend to develop operational mechanisms to compen- 
sate for the deficiencies in the software; these are extremely hard to change, 
once established. In these' cases, the degrees of freedom for tuning the 
system are much more restricted than had been originally anticipated, and 
a number of preferable modes of operation have become practically fore- 
closed by organizational inertia. In other cases, such as in some medical 
information systems, the initial programming product was so far from 
being acceptable to the doctors it was supposed to serve that the product 
was scrapped entirely, leaving no opportunity for tuning at all. 

The Broad View of Software Engineering 

For these reasons, it is important not to restrict our view of "soft- 
ware engineering" to cover only "programming methodology," but to 
adopt a definition of "software engineering" which encompasses the neces- 
sarily concurrent concerns of resource engineering and human relations. 
Fortunately, such a definition is consistent with common dictionary 
[Webster 79] definitions of "software" and "engineering." 

Software is the entire set of programs, procedures, and related 
documentation associated with a system and especially a com- 
puter system. 

Engineering is the application of science and mathematics by 
which the properties of matter and the sources of energy in nature 
are made useful to man in structures, machines, products, systems, 
and processes. 

Since the properties of matter and sources of energy over which software 
has control are embodied in the capabilities of computer equipment, we can 
combine the two definitions above as follows: 

Software Ensineerin 8 is the application of science and mathe- 
matics by which the capabilities of computer equipment are made 
useful to man via computer programs, procedures, and associated 
documentation. 

Discussion 

This definition of "software engineering" contains two key points 
which deserve further discussion. First, our definition of "software" includes 
a good deal more than just computer programs. Thus, learning to be a good 
software engineer means a good deal more than learning how to generate 
computer programs. It also involves learning the skills required to produce 
good documentation, data bases, and operational procedures for computer 
systems. 

The second key point is the phrase "useful to man." From the stand- 
point of practice, this phrase places a responsibility upon us as software 
engineers to make sure that our software products are indeed useful to man. 
I f  we accept an arbitrary set of specifications and turn them into a correct 
computer program satisfying the specifications, we are not discharging our 
full responsibility as software engineers. We must also apply our skills and 
judgment, to the job of developing an appropriate set of specifications, 
and to the job of ensuring that the resulting software does indeed make the 
computer equipment perform functions that are useful to man. Thus, 
concerns for the social implications of computer systems are part of the 
software engineer's job, and techniques for dealing with these concerns 
must be built into the software engineer's practical methodology, rather 
than being treated as a separate topic isolated from our day-to-day practice. 

From the standpoint of learning, the phrase "useful to man" implies 
that the science and mathematics involved in software engineering covers 
a good deal more than basic computer science. For something to be useful 
to man, it must satisfy a human need at a cost that man can afford. Thus, 
the science and mathematics we must learn to apply as software engineers 
also includes the science of understanding human needs and human rela- 
tions, i.e., psychology; the science of costs and values, i.e., economics; and 
the science of developing products within given cost budgets, i.e., manage- 
ment science. 

Software Engineering Curriculum Implications 

From the standpoint of learning, therefore, I find the current direc- 
tion of evolution of the IEEE proposed masters curriculum in Software 
Engineering [Fairley 79] somewhat disappointing. The first draft of the 
curriculum contained both a course on Human Factors in Computing 
System Design and a course on Security and Privacy. In the second draft 
these were reduced to a single course which somewhat awkwardly tries to 
cover both topics together. Neither draft is very strong in the area of soft- 
ware engineering economics, although software management is appro- 
priately highlighted in a course. Again, given the dominance of these con- 
cerns in practical software engineering situations, it is hoped that future 
iterations of the IEEE curriculum recommendations will contain a stronger 
emphasis on the broader view of software engineering. 

RECENT DEVELOPMENTS 

This portion of the paper will convey some of the recent develop- 
ments in the field, as part of the "software engineering - as it is" charter 
of the paper. For brevity and convenience, I will only cover developments 
since the "Software Engineering" survey paper I wrote in 1976 [Boehm 
76]. The first section will cover recent developments in the "programming 
methodology" areas of 

1. Requirements and Specifications 

2, Program Design 

3. Programming 

4. Verification and Validation 

5. Maintenance 

The second section will cover recent developments in the more broad- 
based areas of software engineering such as software phenomenology and 
economics, software psychology, and human factors in software engineering. 

1. REQUIREMENTS AND SPECIFICATIONS 

There are three main approaches for expressing what a software 
product is to do in a set of requirements specifications. These are: 

Informal specifications. These are the traditional free-form 
natural-language specifications. They require virtually no train- 
ing to write or read, but their ambiguity and lack of organization 
generally lead to serious problems with incompleteness, incon- 
sistency, and misunderstandings among the various groups of 
people (users, buyers, developers, testers, trainers, interfacers, 
etc.) who must use them to guide their software development 
activities, 

Formatted specifications. These are specifications expressed in 
a standardized syntax, which provides a framework for orgamz- 
ing the specifications and performing basic consistency and 
completeness checks. They generally require a moderate level 
of training to read and write well, but can be mastered easily by 
average programmers. Their formatted nature precludes certain 
sources of ambiguity, but their imprecise semantics implies that 
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other sources of error are still present (e.g., one can define and 
use a term such as "mode" or "mechanism" and not pin down 
precisely what it means). 

3. Formal specifications. These are specifications expn~ssed in a 
precise mathematical form, with both syntax and semantics 
rigorously defined. They require a good deal more expertise 
and training to be able to read and write, and a longer time to 
write than formatted specifications. However, they eliminate 
virtually all sources of imprecision and ambiguity in a specifica- 
tion, and provide a basis of  constructing a correct program and 
mathematically verifying its equivalence to the specification. 

A good deal of  progress has been made in the last three years in the 
development and use of both formatted and formal specifications. In the 
area of formatted specifications, the two major automated tools, ISDOS/ 
CADSAT [Teichroew-Hershey 77] and SREM [Bell et al. 77, Alford 77] 
have continued to mature through use. ISDOS/CADSAT has added more 
powerful consistency and completeness checks, and a number of user- 
inspired improvements in data entry and output reports. SREM has become 
available on more host computers, has added capabilities to support business 
data processing and distributed processing applications, and has been used 
successfully by several organizations outside of its originators at TRW and 
the U.S. Army BMD Advanced Technology Center [Alford 78]. Non- 
automated tests such as SADT [Ross-Schoman 77] have also experienced 
a significant expansion in the number and variety of  successful users. In 
addition, other automated systems of  formatted specification have been 
developed, such as AXES [Hamilton-Zeldin 79], a function-oriented 
specification method and SAMM [Lamb et al 78], which appears to be 
strongly based on SADT. A good review of formatted specification tech- 
niques is found in [Ramamoorthy-So 78]. 

In the area of formal specifications, a good summary and discussion 
of recent progress can be found in [Liskov-Berzins 79] and in the dis- 
cussion of this article by Parsons, Goguen, Hamilton, and Zeldin in 
[Wegner 79]. Most significantly, formal specification techniques are begin- 
ning to be used with success on nontrivial practical software products. 
Examples are the use of SPECIAL [Roubine-Robinson 77] in developing 
the (hopefully) same operating systems PSOS [Feiertag-Neumann 79] 
and KSOS [Berson-Barksdale 79], and the use of AFFIRM [Musser 79] in 
the attempt to verify the Delta military message-processing software 
[Gerhart-Wile 79]. 

Also, some significant progress has been made at bridging the gap 
between the more readable and easy-to-specify informal and formatted 
specifications, and the more precise, ambiguous formal specifications. One 
interesting approach is the Specification Acquisition from Experts (SAFE) 
approach in [Balzer et al. 77], which provides automated tools to help 
make an imprecise specification more precise. Another highly significant 
achievement is the large (over 400 pages) A-7 avionics software specifica- 
tion [Heninger et al 78], [Heninger 79], based largely on the specification 
techniques of Parnas. This specification combines a great deal of  precision 
with a great deal of  readability, and handles the complexity of  a large 
practical problem extremely well. 

The main result o f  all this progress is to expand the domains in which 
formal and formatted specification techniques are practical to use. The best 
way I have found to characterize these domains is shown in Figure 3. It 
shows that the more expensive, time-consuming, expert-oriented formal 
methods are most appropriate when the requirements are very stable and 
don't need frequent rework (you can affoi'd to use the formal methods) 
and when the application requires a very high degree of  fault-freedom (you 
can't afford not to use the formal methods). The increased power, effi- 
ciency, and practical experience with formal and formatted specification 
techniques is pushing their domains of applicability down (more and more) 
toward problems with l~ss stable software requirements and lower require- 
ments for fault-freedom, continually reducing the domain in which informal 
techniques are preferable. 

HIGH 

REQUIREMENTS 
STABILITY 

LOW 

• NUCLEAR RELEASE SOFTWARE 
• SECURITY KERNELS 

FORMATTED 

O I~p~ ~ ~ T O ~  y v '~'''r INFORMAL 

MODELS • 

LOW ~ '~ , .~_~-~ -~  ; ~ . T . / - ~ . , 5 ~ I ' ~  HIGH 

Figure 3. Problem Domains for Formal, Formatted, and Informal Methods 

2. SOFTWARE DESIGN 

A good deal of  progress has also been made in the area of  software 
design. Considerable experience with earlier design techniques has been 
accumulated, with the general conclusions that the HIPD technique has 
been less successful; that Program Design Language (PDL) [Caine-Gordon 75] 
has been successful and demonstrably superior to flowcharts [Ramsey 
et al. 78] ; and that the various forms of structured or composite deisgn 
[Yourdon 75, Myers 75, Yourdon-Constantine 78, De Marco 78] have been 
highly successful. 

Design techniques emphasizing data structuring have also been matur- 
ing, particularly those of ]Jackson 75] and [Warnier 74]. The technology 
of life-cycle design took a significant step forward with the publication of 
Parnas' "Designing Software For Ease of  Extension and Contraction" 
[Parnas 78, 79], which provides sound guidelines for using information- 
hiding principles to organize software in ways which make it easier to 
accommodate future changes. A good recent survey of software design 
techniques is [Freeman-Wasserman 77]. 

A number of organizations are developing extremely ambitious, 
all-encompassing computer-aided-design systems for software design, includ- 
ing capabilities for control structuring, data structuring, performance 
modeling, core budgeting, complexity analysis, assertions, flow analysis, 
cost analysis, and management tracking. These organizations would be well- 
advised to proceed with caution: such systems can easily collapse under 
their own weight. At least, this was our experience with the DEVlSE 
system [Boehm et al. 75], which included ISDOS and PDL as subsets, along 
with a number of the abovementioned capabilities. Although the originators 
were able to navigate reasonably well through the resulting welter of  data 
entry requirements and control options, most other designers at TRW 
clearly preferred to use PDL (which was easy to learn and use) and imposed 
fewer constraints on their design approach. Our conclusion has been that a 
library of simple, limited-purpose design aids is a preferable way to proceed 
until we better understand the design process. 

3. PROGRAMMING 

The most significant recent advance in programming methodology 
has been the constructive approach to developing correct programs or 
"programming calculus" formulated in [Dijkstra 75], elaborated with 
numerous examples in [Dijkstra 76], and discussed further in [Gries 76]. 
This approach provides a clean, powerful method for working with a pro- 
gram specification to either derive a program structure which correctly 
implements the specification, or (just as important) to identify portions of  
the specification which are incomplete or inconsistent. At this point, it is 
becoming clear that the approach does not fully address all the problems 
involved in the development of  large-scale software and user-oriented 
software (see the discussions by Gries, Homing, Liskov, and Parnas in 
[Wegner 79] and the discussion of"Problems with the Sequential Approach" 
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above). However, the concepts involved provide powerful tools for attack- 
ing many of our most difficult programming problems. 

A strong example of this power is given in the approach of [Hoare 78] 
in applying the concepts of weakest preconditions, guarded commands, 
and indeterminacy to provide a clear, disciplined set of techniques for 
dealing with the extremely difficult area of cooperating sequential pro- 
cesses. In the area of concurrent programming, a good deal of progress has 
also been made in applying the Concurrent PASCAL language to practical 
problems [Brinch Hansen 77, Brinch Hansen 78, Stepczyk 78] and deter- 
mining improvements to cover some of the problems encountered with 
distributed monitors and with efficiency. Good surveys of other work in 
distributed and concurrent processing are given in [Stankovic-van Dam 7|)] 
and [Bryant-Dennis 79]. 

In the area of programming languages, the most significant develop- 
ment has been the progress toward the ADA language sponsored by the 
U.S. Department of Defense [Fisher 77, Ichbiah 79]. Although ADA has 
been widely criticized for its wide scope, ambitious incorporation of new 
concepts, and rapid timetable, it has come through so far as a well-designed, 
responsive language with a very good chance of becoming the next-generation 
standard programming language for a wide range of applications. 

The amount of criticism directed toward ADA has been perhaps the 
most positive aspect of the entire ADA experience to date. No other lan- 
guage has had anywhere near as much open and broad-based review of its 
general and specific requirements and its preliminary and detailed design 
before proceeding into language development. In this respect, the ADA 
process provides a good model and base of experience for similar develop- 
ments of highly standardized software in the future. 

4. VERIFICATION AND VALIDATION 

Progress in formal program verification (proof of correctness) tech- 
niques was discussed, to some extent, in the remarks above on formal 
specification techniques. Again, with respect to Figure 3, the current prog- 
ress in formal methods implies that they already represent a viable option 
for application to practical problems with very stable requirements and a 
very high level of required fault freedom; and that their domain of appli- 
cability in Figure 3 will continue to expand. A survey of current work in 
formal verification techniques is given in [London 79]. 

Recent contributions have also given us a better understanding of 
what we should expect from formal verification techniques - which is 
considerably less than a full guarantee that the verified program is correct. 
A thorough analysis of a number of errors in published program proofs 
has been given in [Gerhart-Yelowitz 76]. An extensive discussion of other 
difficulties with formal verification - understandability and credibility of 
proofs, scaling up to large systems, program changes - and analogous 
experience in engineering and mathematics has been provided in [De Millo 
et al 79], with the general conclusion that the practical use of formal 
techniques will never penetrate the lower regions of requirements stability 
and required fault-freedom in Figure 3. 

Some progress has also been made on the theory of program testing, 
based largely on the concepts in [Goodenough-Gerhart 75]. Several papers 
by Hamlet, Richardson, and Ostrand and Weyuker in the recent IEEE 
Workshop on Software Testing and Test Documentation [Miller et al 79] 
explored further the concepts of test validity and test reliability, with use- 
ful results in terms of improving test strategies. Some new approaches 
with both theoretical and practical interest have also been formulated: 
domain-testing [Cohen-White 77] and program mutation [De Millo et al. 78], 
A valuable discussion of these issues and techniques can be found in 
[Goodenough 79] and the counterpoint discussions of this article by Ger- 
hart, Budd et al., and White et al. in [Wegner 79]. 

Considerable progress has been made in empirical studies of program 
testing and verification. A number of highly useful studies by Howden have 
established at least some initial results on the relative error-detection efficacy 
of various testing and analysis methods [Howden 77,78]. When these 

methods were tried on a common sample of programs containing 28 errors, 
they detected the following number of the 28 errors: 

Path Testing - 18 
Branch Testing - 6 
Structured Testing - 12 
Special Values - 1 '7 

Symbolic Execution - 17 
Intei'face Analysis - 2 
Anomaly Analysis - 4 
Specification Requirements- 7 

In the area of software reliability estimation, a valuable study of the 
predictive performance of  several techniques has been performed by [Sukert 
78]. This study showed that the predictions were generally not very close 
to the actual data, and also highly sensitive to such features as the sam- 
pling interval and the time of sampling initiation. This behavior is most 
likely due to the failure of the independence assumption underlying the 
prediction models, as the actual error data was strongly conditioned by the 
sequence of test objectives pursued during the various test phases. Some 
much more successful predictions of software reliability have been obtained 
in [Musa '79]. One strong contributing factor is that the e r r o r  data come 
from such contexts as trouble reports on a steady-state timesharing system, 
where the independence assumption is more valid. 

Finally, two extremely helpful books have been published by.Myers 
in the area of software testing and reliability [Myers 76, Myers 79], contain- 
ing a great deal of useful practical guidance in achieving reliable software. 

5. SOFTWARE MAINTENANCE 

Thanks to a recent survey [Lientz-Swanson 78] of 487 business data 
processing installations, we now have a clearer picture of some of the gross 
characteristics of software maintenance. The survey confirmed that mainte- 
nance costs outweigh development costs: the percentages of total software 
effort break down as follows: 

Development : 43% 
Maintenance : 49% 
Other : 8% 

Figure 4 shows how the maintenance effort is typically distributed. 
The largest component is due to updates (41.8%), but significant percentages 
are due to software repair (21.'7%), and accommodating changes to input 
data and files (177.4%). This last activity thus consumes almost 9% of the 
total software budget, but it is difficult to identify much that is being done 
in the area of R&D to improve the process. 
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Figure 4. Distribution of Software Maintenance Effort 

The most significant methodological advance to aid in designing for 
maintainability is the work on designing for extension and contraction in 
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[Parnas 78, 79]. Some useful maintainability design checklists and stan- 
dards are given in [Lipow et aI 77], and a good set of maintainability 
management guidelines is presented in [Munson 78]. Still, the software 
maintenance area is greatly underemphasized in current R&D effor1:s. 

RECENT DEVELOPMENTS: INTEGRATED APPROACHES 

This section of the paper discusses recent developments in areas 
which integrate program engineering concerns with other concerns such as 
human relations and software economics. 

Software Psychology and Human Factors 

The first major advance in software psychology was Weinberg's 
excellent book The Psychology o f  Computer Programming [Weinberg 71 ]. 
Subsequent work [Weinberg 72] established a significant correlation between 
components of programmer performance and the objectives that program- 
mers are given to optimize. More recently, some very useful insights into 
programmer motivation were obtained in [Couger-Zawacki 78], which 
showed that data processing personnel are significantly different from other 
classes of workers in the strength of their growth need and the weakness 
of their social need. (One moral: promoting top programmers into manage- 
ment is more likely to invoke the Peter Principle.) Other similar insights 
are given in [Fitz-Enz 78]. 

More and more useful studies are being performed on correlates of 
human performance in software situations, such as the complexity-measure 
experiments in [Sheppard et al. 79], the database query experiments in 
[Schneiderman 78], and the language experiments in [Gannon-Homing75]. 
Some very helpful studies and guidelines for engineering the software man- 
machine interface are discussed in [Dzida et al. 78] on interactive system 
design features, [Gilb-Weinberg 77] on humanized data entry via keyed 
input, and [Meister 76] on general man-machine task structuring. A good 
bibliography of progress in the field is [Atwood et al. 79]. An even better 
general reference will be the upcoming software psychology textbook 
[Schneiderman 79]. 

Software Phenomenology and Economics 

The general quantitative study of software phenomenology has been 
the subject of two highly productive recent workshops ]Lehman 77, Basili 
78] covering such areas as software cost modeling; measurement of soft- 
ware reliability, complexity, and other qualities; quantitative software 
psychology studies; software maintenance phenomena; and general prob- 
lems of software data collection and analysis. 

One trend observable from these workshops and related studies is a 
significant degree of progress in the area of software cost estimation. Some 
examples Df cost estimation models with improved predictive capability 
based on their calibration to at least 20 project data points each are the 
multiplicative Dory model [Herd et al. 77) and IBM-FSD model [Felix- 
Walston 77]; the Rayleigh curve-based Putnam model [Putnam 78]; and 
the composite RCA PRICE S model [Freiman-Park 79] and TRW SCEP 
model [Boehm-Wolverton 78]. Each of these efforts has resulted not just 
in a model but also in an increased understanding of the major factors 
influencing software costs, and their distribution across the various soft- 
ware life-cycle phases and activities. 

Two examples of the latter are shown in Figures 5 and 6, which 
summarize the results of an experiment recently conducted by the author, 
involving the development of the same small software product (an interac- 
tive software cost estimation model) by two 5-6 person teams. Figure 5 
shows the distribution of the resulting lines of code by function. The 
results for the two products are quite similar; in particular, note that only 
2-3% of the code actually implements the model: the other (.)7-98% is 
devoted to various user interface, error handling, declaration, and other 
housekeeping functions. Figure 6 shows the distribution of project effort 
by activity, based on timesheets filled out by the participants. The distri- 
bution tends to reinforce the thesis that software engineering involves a 

good deal more than programming, which consumed only 9-10% of the 
project's effort. 
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Figure 5. What Does a Software Product Do? Distribution of Source Code 
by Function 

SUMMARY OF TWO TEAMS DEVELOPING PRODUCT TO SAME BASIC SPECIFICATION {SMALL, INTERACTIVE SUF'nNARE COST MODEL) 

25 

~, 20 

z 

READING PLANNING DE- PROGRAM-DOCUMEN- TESTING RE * FIXING MEETING MISC.;EL- SIGNING MING TING VIEWING LANEOU~ 
ACTIVITIES 

Figure 6. What Does a Software Project Do?? Distribution of Project Time 
by Activity 

Other significant contributions in this area include the analysis of 
RADC's large software data base of over 300 projects [Nelson 77] to 
obtain strong correlations between software project effort and schedule and 
software product size in number of instructions; the software evolution 
dynamics studies summarized in [Belady-Lehman 79] ; and the encyclopedic 
analysis of general data processing costs and economics in [Phister 76]. 

CONCLUSIONS 

In 1976, the software engineering field seemed to be preoccupied with 
what I called at the time Area I: detailed design and coding of systems 
software by experts in a relatively economics-independent context; while 
the most pressing problems seemed to be in Area 2: requirements analysis~ 
design, test, and maintenance of applications software by technicians in an 
economics-driven context. It is a real pleasure to observe that in 1979 
there is not only a good deal more effort devoted to Area 2, but also that 
the effort is yielding highly useful and solid results. 

Other signs of the increased maturity and sophistication of the 
field are the more careful qualifications and distinctions made in presenting 
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and analyzing software engineering techniques today. A few years ago, the 
field seemed to abound with simplistic panaceas such as: 

• "Proof techniques will guarantee reliable software." 

• "Put the processing on a chip and the software problem will go 
away." 

• "More detailed standards and procedures will make everybody 
good software managers." 

• "Automatic programming is just around the corner, and program- 
mers will all be out of jobs." 

• "Eliminating GOTO's will reduce your software budget by 50%." 

Nowadays, these oversimplified statements are heard very rarely, and 
there is much more emphasis on establishing the particular problem domains 
in which a given technique is effective or preferable to others. This has 
forced us to accept the fact that the software field is not a simple one, and 
that if anything, it is getting more complex at a faster rate than we can 
put it in order. But I suspect that most of us would agree with Bill Wulf's 
assessment of this trend [Wulf 79] : 

"The research trends described ]here] will undoubtedly improve 
the situation, but history suggests that our aspirations will 
grow at least as fast as the technology to satisfy them. I, for one, 
would not want it any other way." 
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