
Class Diagrams

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



SEOC1 Lecture Note 05 2

Class Diagrams
§ Class diagrams provide a structural view of 

systems.
§ Class diagrams capture the static structure of 

Object-Oriented systems, or how they are 
structured rather than how they behave.

§ Class diagrams support architectural design.
§ Class diagrams represents the basics of Object-

Oriented systems. They identify what classes
there are, how they interrelate and how they 
interact.

§ Link to Requirements: Class diagrams constrain 
interactions and collaborations that support 
functional requirements. 



SEOC1 Lecture Note 05 3

Class Diagrams at a Glance

These diagrams contain classes 
and associations. Construction 
involves: 1) Modelling Classes, 2)
Modelling associations between 
classes and 3) Refining and 
elaborate as necessary.



SEOC1 Lecture Note 05 4

Class Diagrams in the Life Cycle
§ They can be used throughout the 

development life cycle
§ Class diagram carry different information 

depending on the phase of the development 
process and the level of detail being 
considered.
• Initially, class diagrams reflect the problem 

domain, which is familiar to end-users
• As development progresses, class diagrams move 

towards the implementation domain, which is 
familiar to software engineers

§ The contents of a class diagram will reflect 
this change in emphasis during the 
development process.



SEOC1 Lecture Note 05 5

Class Diagram Rationale
§ Desirable to build systems quickly and 

cheaply (and to meet requirements)
• All required behaviour can be realized simply from 

objects in the classes of the system
• The system consists of a collection of objects in 

the implemented classes (e.g., there may be a GUI 
coordinate human interaction with the other parts 
of the system)

§ Desirable to make the system easy to 
maintain and modify
• The classes should be derived from the (user) 

domain – avoid abstract object
• Classes provide limited support to capture system 

behaviour – avoid to capture non-functional 
requirements of the system as classes



SEOC1 Lecture Note 05 6

Class Diagrams - Basics

§ Classes
• Basic Class Components
• Attributes and Operations

§ Class Relationships
• Associations
• Generalizations
• Aggregations and Compositions



SEOC1 Lecture Note 05 7

Classes
§ A description of a group of objects all with 

similar roles in the system
• Structural features define what objects of the 

class know
• Behavioral features define what objects of the 

class can do

§ Objects derive from:
• Things: tangible, real-world objects, etc.
• Roles: classes of actors in systems, e.g., students, 

managers, nurses, etc.
• Events: admission, registration, matriculation, etc.
• Interactions: meetings, tutorials, etc.



SEOC1 Lecture Note 05 8

Basic Class Compartments
§ Name
§ Attributes

• represent the state of an 
object of the class

• Are descriptions of the 
structural or static features 
of a class

§ Operations
• define the way in which 

objects may interact
• Operations are descriptions 

of behavioral or dynamic
features of a class

§ Note that the level of detail 
known or displayed for 
attributes and operations 
depends on the phase of the 
development process

§ Objects are instances of 
classes

Name

Attributes

Operations



SEOC1 Lecture Note 05 9

Attributes and Operations
§ < featureName>:<type>
§ Type is the data type of the attribute or the data 

returned by the operation
§ Visibility: private (-), public (+) or protected (#)
§ Attributes

• Initial value, Derived Attribute, Multiplicity [m..n]
• Examples of Multiplicity: n..m - n to m instances; 0..1 -

zero or one instance; 0..* or * - no limit on the number of 
instances (including none). 1 - exactly one instance; 1..* at 
least one instance

§ Operations
• Parameters (passed by value or by reference), Method Note, 

Grouping by Stereotype
• A Method Note captures the actual implementation of 

operations



SEOC1 Lecture Note 05 10

Associations
§ a (binary or n-ary) relationship between 

instances (i.e., objects) of classes

§ There is an association between two classes 
if an instance of one class must know about 
the other in order to perform its work.
• Passing messages and receiving responses

§ In a diagram, an association is a link
connecting two classes

§ Associations: Name, Multiplicity, Role Name, 
Ends, Navigation



SEOC1 Lecture Note 05 11

Generalizations
§ an inheritance link 

indicating one class is a
superclass of the other, 
the subclass
• An object of a subclass

to be used as a member 
of the superclass

• The behaviour of the two 
specific classes on 
receiving the same 
message should be similar

§ A generalization has a 
triangle pointing to the 
superclass

§ Payment is a superclass
of Cash, Check, and 
Credit



SEOC1 Lecture Note 05 12

Generalizations continued
§ Checking Generalizations

• If class A is a generalization of a class B, then “Every B is an
A”

§ Design by Contract
• A subclass must keep to the contract of the superclass by: 

ensuring operations observe the pre and post conditions on 
the methods and that the class invariant is maintained.

§ Implementing Generalizations
• Java: creating the subclass by extending the super class
• Inheritance increases system coupling
• Modifying the superclass methods may require changes in 

many subclasses
• Restrict inheritance to conceptual modelling
• Avoid using inheritance when some other association is more 

appropriate 



SEOC1 Lecture Note 05 13

Aggregations and Compositions
§ Aggregations

• are used to indicate that, as well as having 
attributes of its own, an instance of one class may 
consist of, or include, instances of another class

• are an association in which one class belongs to a 
collection.

• have a diamond end pointing to the part containing 
the whole. 

§ Compositions
• imply coincident lifetime. A coincident lifetime 

means that when the whole end of the association 
is created (deleted), the the part components are 
created (deleted). 



SEOC1 Lecture Note 05 14

Modelling by Class Diagrams
§ Class Diagrams (models)

• from a conceptual viewpoint, reflect the 
requirements of a problem domain

• From a specification (or implementation) 
viewpoint, reflect the intended design or 
implementation, respectively, of a software system

§ Producing class diagrams involve the 
following iterative activities:
• Find classes and associations (directly from the 

use cases)
• Identify attributes and operations and allocate to 

classes
• Identify generalization structures



SEOC1 Lecture Note 05 15

How to build a class diagram
§ Design is driven by criterion of completeness either 

of data or responsibility
• Data Driven Design identifies all the data and see it is 

covered by some collection of objects of the classes of the 
system

• Responsibility Driven Design identifies all the 
responsibilities of the system and see they are covered by a 
collection of objects of the classes of the system

§ Noun identification
• Identify noun phrases: look at the use cases and identify a 

noun phrase. Do this systematically and do not eliminate 
possibilities

• Eliminate inappropriate candidates: those which are 
redundant, vague, outside system scope, an attribute of the 
system, etc.

§ Validate the model…



SEOC1 Lecture Note 05 16

Common Domain Modelling Mistakes
§ Overly specific noun-phrase analysis
§ Counter-intuitive or incomprehensible class 

and association names
§ Assigning multiplicities to associations too 

soon
§ Addressing implementation issues too early:

• Presuming a specific implementation strategy
• Committing to implementation constructs
• Tackling implementation issues

§ Optimizing for reuse before checking use 
cases achieved



SEOC1 Lecture Note 05 17

Class and Object Pitfalls
§ Confusing basic class relationships (i.e., is-a, 

has-a, is-implemented-using)

§ Poor use of inheritance
• Violating encapsulation and/or increasing coupling
• Base classes do too much or too little
• Not preserving base class invariants
• Confusing interface inheritance with 

implementation inheritance
• Using multiple inheritance to invert is-a



SEOC1 Lecture Note 05 18

VolBank: Early Class Diagram



SEOC1 Lecture Note 05 19

Reading/Activity
§ Please review the use of ArgoUML in the 

generation of UML diagrams, look at the 
tour: http://argouml.tigris.org/tours



SEOC1 Lecture Note 05 20

Summary
§ Class Diagrams in the life cycle

§ Class Diagram Rationale

§ Classes
• Basic Class Components
• Attributes and Operations

§ Class Relationships
• Associations
• Generalizations
• Aggregations and Compositions

§ Modelling by Class Diagrams
• How to build a class diagram
• Common domain modelling mistakes
• Class and Object Pitfalls


