
SEOC: summary, revision, exam

Perdita Stevens

School of Informatics
University of Edinburgh

Learning objectives

1. Design simple object-oriented systems, making appropriate use
of available components;

2. Design simple software components, making sensible API
decisions;

3. Evaluate and evolve object-oriented software designs, making
use of common design patterns if appropriate;

4. Create, read and modify UML diagrams documenting designs;

5. Discuss the use of modelling in software development, e.g.
why and how models of software can have varying degrees of
formality.

Using SEOC

I Please remember what you learned here when you develop
software in future – e.g., in your project. This doesn’t mean
“draw UML diagrams for everything” (think about whether
they’re useful in the circumstances!) but it does mean “make
your designs SOLID”!

I Please do well in your exams...

SEOC exams

Same format as in past years: three questions, of which you choose
two.

Aim to have a balance between:

I bookwork

I straightforward application of knowledge

I more challenging problem-solving.

Single-semester visiting undergraduates examined this semester,
everyone else in the summer.

Example exam question types

Be prepared to answer exam qustions such as

I You are to design a system to do Draw a ... diagram to
illustrate

I Explain what ... means in this ... diagram.

I Write an essay on ... drawing on ...

I Write an OCL expression to ... / What does the following
OCL mean... ?

I Imagine you are ... Suggest how you should use modelling to
help you work.

I To make the following design decision, what information
would you need and why?

I What is the ... design principle/pattern? Apply it/explain
whether it is useful in this situation ...

Notes on doing SEOC exams

Write clearly and concisely. Use precisely correct UML.

Many questions lend themselves to addendums like “Comment
briefly on [missing or unclear requirements, design alternatives,
problems in a design]” – this is your chance to show that you can
think like a designer! Don’t woffle. Do show understanding. (The
mark scheme will typically say something like “1 mark each for any
two reasonable points, e.g ...”)

Assume your papers are being read by a reasonable – but picky! –
human being.

If you are confused about what a question wants you to assume,
briefly say why, say what you are assuming, and do what seems
best to you.

Writing implements

If you pay close attention to detail, you will notice that the script
books and a page on the university site says you have to do exams
in pen, not pencil.

This has caused concern for exams with diagrams in – are you
really supposed to draw them in pen?

Two things are true:

1. It looks as though the University really does say Yes. So do.

2. But personally I can’t imagine any Board of Examiners in
Informatics agreeing to dock marks from someone who wrote
a correct answer in pencil!

Do not waste time redrawing a whole diagram if you make an
error. If you leave your script in any state where I can tell that you
meant the correct thing, you will get the marks.

Examinable material

Basically, everything covered in

I lectures

I required readings

I exercise sheets

I videos, including both the ones I made and the others

unless otherwise stated.

Revision resources

The final exercise sheet is revision, based around past exam
questions.

Feel free to post any questions to Piazza.

Use the exercise sheets, including the extension ones, especially if
you didn’t do those as you went through.

Past exam papers (on university past paper site): useful but NB
syllabus shift just before 2012/13. E.g. many past papers ask you
to draw use case diagrams; I wouldn’t. And some ask you to draw
a “CRC card game” – I might as you about CRC cards, but
wouldn’t ask you to represent their use in a scenario.

Please fill in the questionnaire!

Would very much appreciate feedback on your experience of this
course – it’s changing a lot next year, anyway.

Key question I’d particularly like input on this year:

I Given that there will be more time next year (next year’s
course will be 20pts not 10pts), what should I add?

I am always interested to hear from past students now working in
software development. Please drop me an email some day!

Please come to my inaugural lecture in ILW!

Wednesday 17th February (late afternoon) with reception after
(George Square Lecture Theatre)

What has mathematics to do with software engineering?
When I first entered software engineering from mathematics, there was a
lot of talk about ”the software crisis”. That today’s students typically
don’t recognise the phrase is testament to the progress that has been
made in software engineering since then. Nevertheless, I’ll argue that
software engineering has a worse problem today than it did then. At first
sight, the relation between software engineering and mathematics is part
of the problem; I will explain why it’s actually part of the solution. I’ll
present a vision of what the engineering of software might look like by
the time today’s undergraduates retire, and I’ll discuss some of the
research challenges that need to be met to make that happen. I’ll touch
on model-driven development, agile methodologies, bidirectional
transformations, and the Principle of Least Surprise. The talk will be
aimed at a general audience, and students are especially welcome.

