
Tutorial: OCL

Purpose

Let you practise reading and writing OCL constraints.
Here are a couple more useful OCL operations on collections that were not explained in the

slides. (There are more: for full details, see section 11.7 of the OCL spec.)
Suppose c is a Collection of elements of type T, and t : T. Then we can write:

• c->includes(t)

a Boolean expression that will be true iff the element t is equal to an element of the collection
(exercise: write this in terms of exists instead: yet another example of the non-parsimony
of the UML/OCL language!)

• c->including(t)

an expression that evaluates to a collection which is the same as c except that c has been
added to the collection. (If c is a sequence, t is added as the last element of the new
collection; if it is a bag or a set, the obvious thing happens.)

These questions refer to the following diagram extracted from the OCL specification.

1 Question 1

Translate into English:

1



1. In the context of a Person:

isMarried implies age > 15

2. context Company inv:
numberOfEmployees = employee->size()

3. context Person::income(d:Date) : Integer
pre: d.laterThan(self.birthDate)
post: if age < 18

then result < 100
else result < 200

endif

4. In the context of bigBank : Bank:

bigBank.customer -> collect(p : Person | p.managedcompanies)
-> asSet() -> size() >= 3

What is the difference between this and

bigBank.customer -> collect(p : Person | p.managedcompanies)
-> size() >= 3

?

2 Question 2

Translate into OCL:

1. The length of a person’s first name is always less than 20 characters, and so is the length of
their last name.

2. Anyone who manages a company is an employee of that company. (You could write this in
context Person – making it an invariant of Person – or in context Company – making it an
invariant of Company. Try it both ways.)

3. Every company has a male employee.

4. It is a class invariant of Person that nobody can have more than 5 bank accounts.

5. Nobody can have two employments with companies that have identical names.

2


