
Harder class and sequence diagram exercises

September 18, 2014

Purpose

These exercises are intended to be a little more challenging than the basic ones. Do these if you
have time once you are confident with the basic exercises. If you don’t do them now, I suggest
doing them later for revision. There may well not be time to discuss these in the tutorial, but if
you would like feedback on your work, write it up and give it to me for marking (either by email
or on paper when you see me). You may do this at any time during the course. I expect to be
able to return marked work within a few days under normal circumstances – but of course that
won’t work if everyone hands in a pile of work a few days before the exam! If that does happen
I’ll consider arranging a group feedback session instead.

Exercises

1. Imagine you are leading the development of an application to provide university students
with individualised timetables. Assume that the details of the situation are those you are
familiar with: students registered for 120 points of courses in a year, some courses having
lectures, some having tutorials, lectures and tutorials taking place in rooms at certain times
on certain days, etc. Develop a conceptual class model for this situation. (That is, determine
the domain classes that you will need and their conceptual relationships – do not (yet!)
concern yourself with the timetabling functionality.) You should be able to use (at least)
the following UML elements: class, attribute, association, generalization, aggregation.

2. Many interactions involve loops. Modify the Party example so that instead of a party
involving a single entertainer it involves a collection of entertainers, whose costs have to be
summed. First, think about how you could represent this in a sequence diagram and sketch
possibilities. Then, look up sequence fragments in UML sequence diagrams and see how
UML2 does represent this situation.

3. Consider a situation involving a callback. Show on a sequence diagram:

(a) an object a:A sends a message registerObserver(a) to b:B, i.e. with a reference to
itself as argument (assume b:B replies without sending any messages itself);

(b) an actor sending newValue(17) to b;
(c) b, as part of its response, sending message notifyObservers() to itself;
(d) b, as part of its response to its own message notifyObservers(), sending message

notify() to a;
(e) a, as part of its response to notify(), sending message getNewValue() to b, which

replies with 17.

Put in nested activations and all return arrows, and check that what you’ve written makes
sense (everything, except the initial message and the actor’s message, should be caused by
something). This is what happens in the Observer pattern, which we’ll discuss later. Can
you see what it’s for, designwise?

1


