Interfaces and interactions

Perdita Stevens

School of Informatics
University of Edinburgh



Law of Demeter

(Recall from Inf2C-SE):

in response to a message m, an object o should send messages
only to the following objects:

1. o itself

2. objects which are sent as arguments to the message m
3.
4

. objects which are directly accessible from o, that is, using

objects which o creates as part of its reaction to m

values of attributes of o.



Law of Demeter

(Recall from Inf2C-SE):

in response to a message m, an object o should send messages
only to the following objects:

1. o itself

2. objects which are sent as arguments to the message m
3.
4

. objects which are directly accessible from o, that is, using

objects which o creates as part of its reaction to m

values of attributes of o.

In particular o should not send a message to an object which is
acquired by sending another message e.g.

myP.getThing () .doSomething(); //violates LoD



Why is the LoD not “the one dot rule”?

You can see the attraction: LoD tries to rule out code like:
myP.getThing () .doSomething () ;

Some code violates LoD without having more than one dot on a
line:

Thing t = myP.getThing();
t.doSomething() ;

More interestingly some has more than one dot on a line and does
not violate it: e.g. if an object returned from a message was
already accessible.

Let's look at the rationale behind LoD, rather than the mechanics.



Rationale

The Law of Demeter tries to avoid indirect dependencies of one
class on another, which may be hard to spot from code or models.

E.g. if class OClass has an attribute myP of class P, it is clear from
the source of 0Class that it depends on P. If P changes, we will
easily discover that we have to check whether 0Class needs to
change.

But if P has a method getThing() returning an object of class
Thing and o calls this and sends the resulting Thing a message,
now OClass depends on Thing.

This may not be readily apparent from 0Class's code or a
corresponding UML diagram. That's the problem.



Setting where LoD helps avoid design problem

EverythingController

getJC(j:Job) : JobController

JobController

(names slightly changed to protect the guilty)




But the LoD must not be followed slavishly...

There are several situations where even a good design will disobey
the LoD, and we detect them by understanding the rationale for it.

Suppose my code goes:
myP.getThing () .doSomething() ;

First: if | already depend on the class providing doSomething(),
no harm is done.

Second: if | can't modify myP's class (to make its APl more
complete and offer me the service I'm accessing this way), | may
have no good alternative.

Indeed, the purer the OO language the more likely it is that there's
no point in a method returning something if you can't
subsequently sent it a message!

E.g. where a method returns a String.



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}
public String n() {...return someString;}

}



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}
public String n() {...return someString;}

}



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}
public String n() {...return someString;}

}



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}
public String n() {...return someString;}

}



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl1 = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}
public String n() {...return someString;}

}



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}
public String n() {...return someString;}

}



Example

Suppose we are responsible for classes 0, P and Thing.

public class OClass {

private P myP;

public void m(String s) {
Thing th = myP.getThing(); //ok, attribute
P p = new PQ);
Thing newth = p.getThing(); //ok, object created here
int sl = s.length(); //ok, argument
String t = this.n(); //ok, object itself
int tl = t.length(); //technically not ok
int t12 = this.n().length(); //technically not ok
myP.getThing() .doSomething(); //really not ok

}
public String n() {...return someString;}

}



What should a method return?

Conventionally, many OO methods return void. Their job is to
change some state, not to compute a result. They are commands,
e.g. modifiers.

Bertrand Meyer proposed the principle of Command Query
Separation saying that any method should either change state, or
return a value, but not both. (“Asking a question should not
change the answer.”)

Advantages include: then all non-void-returning methods can be
used in OCL constraints, because they're all queries!

But there are disadvantages to this separation, not least that it can
lead to repetitious code:

customer.setFirstName(‘‘John’’);
customer.setLastName (¢ ‘Bloggs’’);
customer.setAge(32);



Alternative: return this

If modifiers return themselves — their code ends with return
this; — we can write instead:

customer.setFirstName(‘ ‘John’’)
.setLastName (¢ ‘Bloggs’’)
.setAge(32);

and sometimes this is a win.

In the pure form this does not violate LoD, though it does violate

CQs.

Fluent interfaces go further and often do violate LoD, in order to
gain advantages of, well, fluency.

Optional exercise: google fluent interfaces and read up on this.



Conclusion

The great thing about design principles and patterns is that there
are so many to choose from.

You cannot, and should not, try to follow them all at all times.

Try to be aware of what underlies them, and use them as a guide
where appropriate.

We've seen:

SOLID
Many properties of APIs
Law of Demeter

Command Query Separation

vV v v v Y

Many patterns



