
Sequence Diagrams

Massimo Felici

Massimo Felici Sequence Diagrams c©2004-2009

1

What are Sequence Diagrams?

• Sequence Diagrams are interaction diagrams that detail how operations are
carried out

• Interaction diagrams model important runtime interactions between the parts
that make up the system

• Interactions Diagrams

– Sequence diagrams
– Interaction overview diagrams
– Timing diagrams
– Communication diagrams

Massimo Felici Sequence Diagrams c©2004-2009

2

What do Sequence Diagrams model?

• capture the interaction between objects in the context of a collaboration

• show object instances that play the roles defined in a collaboration

• show the order of the interaction visually by using the vertical axis of the
diagram to represent time what messages are sent and when

• show elements as they interact over time, showing interactions or interaction
instances

• do not show the structural relationships between objects

Massimo Felici Sequence Diagrams c©2004-2009

Slide 2: What do Sequence Diagrams model?

• Model high-level interaction between active objects in a system
• Model the interaction between object instances within a collaboration that

realises a use case
• Model the interaction between objects within a collaboration that realizes an

operation
• Either model generic interactions (showing all possible paths through the

interaction) or specific instances of a interaction (showing just one path
through the interaction

• Capture the interaction that takes place in a collaboration that either realises
a use case or an operation (instance diagrams or generic diagrams)

• Capture high-level interactions between user of the system and the system,
between the system and other systems, or between subsystems (sometimes
known as system sequence diagrams)

3

Participants in a Sequence Diagram

• A sequence diagram is made up of a collection of participants

• Participants – the system parts that interact each other during the sequence

• Classes or Objects – each class (object) in the interaction is represented by its
named icon along the top of the diagram

Massimo Felici Sequence Diagrams c©2004-2009

Slide 3: Participants in a Sequence Diagram

• In UML 1.x, participants were usually software objects (instances of classes) in
object-oriented programming sense.

• In UML 2.0, as general modeling language, participants are also at the level of
system parts.

Notations 4

Sequence Diagrams

• Frames
• Lifelines
• Messages and Focus Control
• Combined Fragments
• Interaction Occurrences
• States
• Continuations
• Textual Annotation
• Tabular Notation

Massimo Felici Sequence Diagrams c©2004-2009

5

Frames

Massimo Felici Sequence Diagrams c©2004-2009

Slide 5: Sequence Diagrams Dimensions

Time. The vertical axis represents time proceedings (or progressing) down the
page. Note that Time in a sequence diagram is all a about ordering, not
duration. The vertical space in an interaction diagram is not relevant for the
duration of the interaction.

Objects. The horizontal axis shows the elements that are involved in the
interaction. Conventionally, the objects involved in the operation are listed
from left to right according to when they take part in the message sequence.
However, the elements on the horizontal axis may appear in any order.

6

Lifelines

• Sequence diagrams are organised according to time
• Each participant has a corresponding lifeline
• Each vertical dotted line is a lifeline, representing the time that an object exists
• Lifeline name:

[connectable-element-name][‘[‘selector’]’][:class-name][decomposition]

Massimo Felici Sequence Diagrams c©2004-2009

Examples 7

Lifelines Names
Syntax Explanation

seoclecturer An object named secolecturer
seoclecturer:Lecturer An object named seoclecturer of class

Lectuer
:Lecturer An anonymous object of class Lecturer
lecturer[i] The object lecturer that is selected by the

index value i
s ref sd3 A subsystem s whose internal interaction

is shown in sequence diagram sd3
(decomposition)

self The connectable element that owns the
interaction shown in the sequence diagram

Massimo Felici Sequence Diagrams c©2004-2009

8

Messages and Focus of Control

Massimo Felici Sequence Diagrams c©2004-2009

Slide 8: Messages and Focus of Control

• Focus of control (execution occurrence): an execution occurrence (shown as
tall, thin rectangle on a lifeline) represents the period during which an element
is performing an operation. The top and the bottom of the of the rectangle
are aligned with the initiation and the completion time respectively.

• An Event is any point in an interaction where something occurs.

9

Messages

• Messages (or signals) on a sequence diagram are specified using an arrow
from the participant (message caller) that wants to pass the message to the
participant (message receiver) that is to receive the message

• A Message (or stimulus) is represented as an arrow going from the sender to
the top of the focus of control (i.e., execution occurrence) of the message on
the receiver’s lifeline

Massimo Felici Sequence Diagrams c©2004-2009

10

Message Type Notations
Message Description

Synchronous: A synchronous message between active

objects indicates wait semantics; the sender waits for the

message to be handled before it continues. This typically

shows a method call.

Asynchronous: With an asynchronous flow of control,

there is no explicit return message to the caller. An

asynchronous message between objects indicates no-wait

semantics; the sender does not wait for the message before

it continues. This allows objects to execute concurrently.

Reply: This shows the return message from another

message.

Massimo Felici Sequence Diagrams c©2004-2009

11

Message Type Notations
Message Description

Create: This message results in the creation of a new

object. The message could call a constructor for a class if

you are working with Java, for example.

Lost: A lost message occurs whet the sender of the

message is known but there is no reception of the message.

This message allows advanced dynamic models to built

up by fragments without complete knowledge of all the

messages in the system. This also allows the modeler to

consider the possible impact of a message’s being lost.

Found: A found message indicates that although the

receiver of the message is known in the current interaction

fragment, the sender of the message is unknown.

Massimo Felici Sequence Diagrams c©2004-2009

Slide 11: Message Type Notations

Element Creation: when an element is created during an interaction, the
communication that creates the element is shown with its arrowhead to the
element

Element Destruction: When an element is destroyed during an interaction, the
communication that destroys the element is shown with its arrowhead to the
elements lifeline where the destruction is marked with a large× symbol

Slide 11: Message and Argument Syntax

Message Syntax

[attribute=] signal-or-operation-name [(argument)] [:return-value]|*

Argument syntax

[parameter-name=] argument-value| attribute=out-parameter-name [:argument-value]

| -

Slide 11: Types of Communications

Reflexive Communications: similar to a reflexive association or link, an element
may communicate with itself where communication is sent from the element
to itself. Sending messages to itself means an object has two activations
simultaneously.

Repetitions: involve repeating a set of messages or stimuli within a generic-form
interaction. Messages are grouped together in a rectangle. The expression in
square brackets, [], is a condition. The asterisk “*” means iteration.

Conditionality: branching results in a choice of two different messages (or
operation calls) being sent to the same object, the lifeline of the object splits
with two activations. The separate lifelines merge back together after the
completion of different actions in response to the different messages.

Return Values: often worthwhile to label the return value because it may be
used later in the interaction.

Example 12

A sequence diagram for distributed control

Massimo Felici Sequence Diagrams c©2004-2009

13

Sequence Fragments

• UML 2.0 introduces sequence (or interaction) fragments

• Sequence fragments make it easier to create and maintain accurate sequence
diagrams

• A sequence fragment is represented as a box, called a combined fragment,
which encloses a portion of the interactions within a sequence diagram

• The fragment operator (in the top left cornet) indicates the type of fragment

• Fragment types: ref, assert, loop, break, alt, opt, neg

Massimo Felici Sequence Diagrams c©2004-2009

Notation 14

Sequence Fragments

Massimo Felici Sequence Diagrams c©2004-2009

15

Common Operators for Interaction Frames
Operator Meaning

alt Alternative multiple fragments: only the one whose condition is true will

execute.

opt Optional: the fragment executes only if the supplied condition is true.

Equivalent to an alt only with one trace.

par Parallel: each fragment is run in parallel.

loop Loop: the fragment may execute multiple times, and the guard indicates the

basis of iteration.

region Critical region: the fragment can have only one thread executing it at once.

neg Negative: the fragment shows an invalid interaction.

ref Reference: refers to an interaction defined on another diagram. The frame

is drawn to cover the lifelines involved in the interaction. You can define

parameters and a return value.

sd Sequence diagram: used to surround an entire sequence diagram.

Massimo Felici Sequence Diagrams c©2004-2009

Slide 15: Combined Frames

• It is possible to combine frames in order to capture, e.g., loops or branches.

• Combined fragment keywords: alt, opt, break, par, seq, strict, neg, critical,
ignore, consider, assert and loop

• Other ways in UML 2.0 of hiding information are by interaction occurrences
and continuations

Example 16

Interaction Frames

Massimo Felici Sequence Diagrams c©2004-2009

17

Other Notations

• States - it is possible to place states on lifelines (e.g., pre and post conditions)

• Textual notations (e.g., comments, time constraints, duration constraints)

• Tabular notation

Massimo Felici Sequence Diagrams c©2004-2009

18

Timing

• Constraints are usually used to show timing constraints on messages. They
can apply to the timing of one message or intervals between messages.

• Durations – The duration of activations or the time between messages can be
show with construction marks.

Massimo Felici Sequence Diagrams c©2004-2009

Slide 18: Timing

• Label the points of issue and return for a message. Use these labels in
expressing timing constraints. This technique also works for message sending
that takes time (so arrows are sloping down).

• Metric information in the diagram contribute to representing timing, but this
is not recommended (why not?). Although if the line representing the message
is horizontal, it is unclear whether it applies to the time the message is sent or
received

Example 19

Timing

Massimo Felici Sequence Diagrams c©2004-2009

20

How to Produce Sequence Diagrams

1. Decide on Context: Identify behavior (or use case) to be specified

2. Identify structural elements:

(a) Model objects (classes)
(b) Model lifelines
(c) Model activations
(d) Model messages
(e) Model Timing constraints

3. Refine and elaborate as required

Massimo Felici Sequence Diagrams c©2004-2009

21

When to Use Sequence Diagrams

• You should use sequence diagrams when you want to look at the behaviour of
several objects within a single use case.

• Sequence diagrams are good at showing collaborations among the objects.

• They are not so good at precise definition of behaviour.

Massimo Felici Sequence Diagrams c©2004-2009

22

How do Interaction Diagrams help?

• Check use cases

• Check class can provide an operation – showing how a class realizes some
operation by interacting with other objects

• Describe design pattern – parameterising by class provides a scheme for a
generic interaction (part of Software Architecture)

• Describe how to use a component – capturing how components can interact

Massimo Felici Sequence Diagrams c©2004-2009

23

Required Readings

• UML course textbook, Chapter 9 on Interaction Sequence Diagrams

Massimo Felici Sequence Diagrams c©2004-2009

24

Summary

• Sequence Diagrams

– capture some elements of the dynamics of systems
– support a number of different activities
– describe interaction in some detail, including timing

• Dimensions – Objects and Time

• Basics – Objects, Lifelines, Activations, Messages, etc.

• Timing

Massimo Felici Sequence Diagrams c©2004-2009

