
‘It’s Engineering Jim … but not as we know it’
Software Engineering - solution to the software crisis, or part of the problem?

Antony Bryant
Professor of Informatics

Leeds Metropolitan University
The Grange, Beckett Park

Leeds LS6 3QS; UK
+44 113 283 7422

a.bryant@lmu.ac.uk

ABSTRACT
This paper considers the impact and role of the
‘engineering’ metaphor, and argues that it is time to
reconsider its impact on software development practice.

Keywords
Engineering metaphor, software development practice

1 INTRODUCTION
… a new subdiscipline, software engineering,

has arisen. The development of a large piece of
software is perceived as an engineering task, to be
approached with the same care as the construction
of a skyscraper, for example, and with the same
attention to cost, reliability, and maintainability of
the final product. … Even with such an engineering
discipline in place, the software-development
process is expensive and time-consuming. (An
extract from the entry on software engineering, a
subsection of the entry on Computer Science:
Software, in the CDROM version of the
Encyclopaedia Britannica)

As we move into the fourth decade of ‘software
engineering’ - taking 1968 as the benchmark - we are faced
with the pervasive dilemma that no-one seems satisfied
with the meaning and understanding of the term itself. This
is not merely a matter of semantics, but has organizational
and financial implications. It can affect the allocation of
research funding, and the resourcing of teaching and
equipment. The community of software engineers may be
happy with the term, but they must be aware that those
outside this enclave fail to understand its meaning and
ramifications: And I suspect that most outsiders are either
unaware that software engineering exists, or are puzzled by
the term itself.

This ambiguity has ramifications in establishing the
relationship of the ‘sub-discipline’ to computer science,
information systems and other areas of study; and therefore
affects issues such as training, curriculum, career
development, funding, professionalism (particularly in
terms of visibility, certification and recognition), and
practice, in addition to any specific knowledge claims as a
distinctive discipline.

The idea that software has to be ‘engineered’ evokes an
image of rigour, care and assurance. In the 1980s
professional qualifications and university courses emerged
with ‘software engineering’ as the key component of their
title and content; and such courses seemed to offer a more
pragmatic understanding of computer technology than did
the more traditional computer science courses. In practice,
however, it soon became clear that the situation was not
quite as simple. The term was often misunderstood, and
some university courses found it difficult to recruit to such
courses as many potential applicants were misled by the
term itself. Although several standard student texts
appeared and have been continually updated and revised,
there is still an air of unease around the term and its
associated terminology. In the late 1990s there is perhaps a
consensus around the term itself within the academic and
research community, but as a specific course title its
popularity and use is declining.1

Discussion threads on the electronic list from the (UK-
based) Conference of Professors and Heads of Computing
(CPHC) illustrate this all too cogently. For various reasons
the CPHC have had to produce details of what is involved
in research into and the study of computing, informatics,
software engineering and so on. In most instances an
uneasy consensus has been reached, but all too often with

 1 These observations are derived almost entirely from
experience in the UK, and so may seem strange in other
countries where software engineering may well be a
thriving subject area. The purpose of international
gatherings such as ICSE is in part to ensure that our limited
areas of experience are remedied by interchange with
others from different locations.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

77

the nagging suspicion that this agreement is only
understood by the senior academics concerned, and will be
misinterpreted by those outside this restricted domain: In
particular by the wider engineering community, funding
organizations, practitioners, potential students, and
commercial developers.2

Whatever the basis for understanding the term software
engineering itself, software developers continue to be faced
with the dilemma that they seem to wish to mimic
engineers, and lay a claim for the status of an engineering
discipline; but commercial demands and consumer desires
do not support this. In what follows I shall argue that in
part this is because the term itself carries with it a set of
mixed cognitive implications that contribute to the
intellectual quandary surrounding software development.

2 SOFTWARE ENGINEERING DEFINED &
CRITIQUED

‘Standard texts’ such as those from the USA and UK by
McDermid, Pressman and Sommerville [16, 19, 22]
embody the consensus view of software engineering.
Sommerville defines software engineering as being
‘concerned with theories, methods and tools which are
needed to develop software for ... computers’. Software
engineering differs from other forms of engineering since it
‘is not constrained by materials governed by physical laws
or by manufacturing processes’ (p4).

Pressman quotes Fritz Bauer from the 1968 NATO
conference as follows - software engineering is the
‘establishment and use of sound engineering principles in
order to obtain economically software that is reliable and
works efficiently on real machines’ (quoted p23). Pressman
stresses the need for ‘engineering discipline in software
development’. McDermid points out that ‘[I]f software
engineering is to become a true discipline it too must have
an appropriate foundation in science and mathematics’
(p1).

So we have a common view that software development
needs a rigorous basis, and this is to be found in
engineering, and indirectly in science and mathematics. I
suspect that few readers will find anything exceptional in
such statements. We are all too well aware that software
development often proceeds with little or no constraint, and
so the application of an immediately appealing, and
intuitively obvious archetype or exemplar needs little or no
justification. But what do all these writers mean when they
talk of ‘engineering’? Are they suggesting that software
development can benefit from simply mimicking

 2 As this paper was being prepared the CPHC discussion
list was developing a thread around the topic of the scope
of software engineering - a topic that has been evoked by a
recent benchmarking exercise with ramifications for
funding and assessment.

engineering? McDermid stresses the need for a foundation
in science and mathematics. Pressman, quoting Bauer, talks
simply of ‘engineering principles’, which might incorporate
theoretical principles - and so include science and
mathematics - but which might also hint at principles
related to engineering practise. Sommerville includes
‘theories, methods and tools’ which seems to cover both the
theoretical and practical aspects; but he also makes the
point that software engineering is distinct from other forms
of engineering because of the nature of software itself.

 The basic motivation for use of the term ‘software
engineering’ remains the same as it was in the 1960s, but
the scope and focus have certainly developed in the last 30
years. These developments have been summarized by
Wasserman [23] who points to seven key changes that have
impacted on software engineering practice.

• Criticality in the time-to-market for commercial
products

• Changing economics of computing - lower hardware
costs, greater development costs

• Emergence of powerful desk top computing
• Extensive local and wide area networks - especially the

web as publishing and distribution mechanism
• OO Technology - growing in availability and

acceptance
• WIMPS and GUIs
• Unpredictability of waterfall model of software

development (inapplicability seems a more accurate
term for Wasserman’s argument)

 Wasserman argues that any one of these developments
would have had a significant impact on the software
development process; but taken together they have resulted
in a major transformational force. Software engineering in
the 1990s and beyond cannot be an extension of what it
was in the 1970s. Current software development has to
make a quantum leap from its origins. In so doing, software
engineering theory and practice have to focus around the
fundamental principles of an ‘effective discipline’.
Wasserman offers a list of eight fundamental facets of
software engineering ‘that form the basis for an effective
discipline’. These are as follows:-

• Abstraction - a key aspect for focusing on relevant
detail - ‘fundamental technique for understanding and
solving problems’

• Analysis & Design Methods and Notations - for
communication, a basis for checking and reuse - ‘basic
tools for communication in an engineering discipline’

• User Interface Prototyping - for requirements
determination, assurance, feasibility - the ‘most
effective way to elicit user requirements’

• Modularity and Software Architecture - reflecting
principles of ‘good design’, including decomposition,
different perspectives - this plays a ‘major role in
determining system quality and maintainability’

78

• Lifecycle and Process - with a matching of process to
different goals and contexts - ‘having some defined
and manageable process for software development is
much better than not having one at all’

• Reuse - including more than just code; and covering
aspects such as responsibility for any reused
component - ‘an essential part of any software
development process’

• Metrics - improvements … cannot be calculated
without an effective metrics effort’

• Tools and Integrated Environments - ‘should provide
comprehensive and integrated support for the
development process’ (p24)

Given the contested nature of the term itself, particularly by
non-software engineers (ambiguity intended), we might ask
in what ways would progress in terms of any or all of these
eight result in the firm foundation of a truly engineering-
based discipline of software development? On the other
hand we might take the views of those such as Parnas [18]
who argues for a distinction between engineering and
science: With the basis for software engineering being
found in computer science, in much the same way as
physics provides the disciplinary basis for electrical
engineering. Whether we side with Wasserman’s more self-
contained approach, or Parnas’ foundational model, we still
need to pose a further series of questions:

• Are we pursuing the right goal when striving for
engineering status, however understood?

• Are we trying to attain it in an appropriate manner?
• Assuming that the idea of software engineering was

appropriate in the 1960s, to what extent has this
become a misplaced assumption?

A glance through key journals, particularly IEEE Software,
indicates that the philosophical basis of software
engineering has remained a live issue since the 1960s. This
is not in any way symptomatic of a critical deficiency in
software engineering. On the contrary it should be seen as
evidence of an emerging and vibrant discipline that has
perhaps yet to establish itself fully; and where there is
opportunity to influence its nature and scope. What does
need to be demonstrated, however, is the existence of
certain problematic issues that arise from the (often
unquestioned) bases of software engineering itself: In
particular the ways in which the terminology and imagery
in current use may influence our understanding of the
domain and its associated practices.

3 ACCIDENTS, ESSENCES AND METAPHORS
 We have all been influenced by F P Brooks’ classic paper
‘No Silver Bullet’ [5]; the paradigmatic exemplar of the
dilemmas of software engineering. Using the Aristotelian
categories of ‘accidents’ and ‘essences’, Brooks
distinguishes between the characteristics of software that
are problematic and ineluctable, and those that are
contingent - historical accidents - that beset software

development. He offers several examples of these
accidents, and points out that they can and usually will be
overcome. This might be seen to imply that the number and
range of such contingent factors will simply reduce over
time. Yet, although not making any specific mention of the
possibility, Brooks does not rule out that new historical
accidents may arise.

 The conclusions of Brooks’ argument are that we have a
range of activities concerned with the production of the
most complex of human artefacts, where many of the usual
possible conceptual and practical support mechanisms are
unavailable. We cannot build scale models, we cannot
demonstrate key aspects of the processes involved; and
once software is produced, it is unlikely that it can be
stabilized. It will constantly be changed to yield to demands
for it to be altered to adapt to changing requirements and
contexts. No wonder that software developers apply
terminology borrowed from elsewhere, or create new terms
closely related to those from other contexts. This inevitably
results in software development being described and
defined in terms of metaphors borrowed from other
disciplines. In particular the imagery of engineering is used,
and so we have aspects of software development concerned
with maintenance, prototyping, construction, specification,
design and so on.

 Brooks himself expressed some uneasiness with this
imagery in later - and perhaps less noticed - sections of his
No Silver Bullet paper. He noted the impact that the
construction metaphor had on him when he first came
across it in 1958. ‘The metaphor shift was powerful, and
accurate. Today … we freely use other elements of the
metaphor, such as specifications, assembly of components,
and scaffolding.’ (p18) Writing in the mid-1980s, however,
he argued that, although useful and powerful, this
construction metaphor had outlived its usefulness, and
needed to be replaced by an image of software
development more akin to growth than construction. It is
almost as if the term ‘software engineering’ has itself
become a newly emergent historical accident.

 This feature of Brooks’ argument needs careful analysis
and understanding. He uses the term ‘metaphor shift’ when
noting the impact of the building metaphor; implying that it
replaced an existing metaphor. More than that, he takes it
as axiomatic that metaphors operate with regard to software
development. The particular shift he locates in the 1950s is
one from writing software to building software: And these
metaphors have a powerful impact on people’s practices
and cognition. The terms used are not simply words on a
page, they have significant effects: As Brooks asserts when
pointing out that perhaps the construction metaphor should
be replaced by one concerned with growth and nurture - ‘I
have seen dramatic results since I began urging this
technique (the growing of software using incremental
development) on my project builders in my Software

79

Engineering Laboratory class.’ (p18) He continues in a
similar vein, mentioning heightened morale, jumps in
enthusiasm, redoubled efforts and so on. He concludes that
‘teams can grow much more complex entities in four
months than they can build’.

 Brooks seems clear in his mind that metaphors are
powerful and crucial for software developers. He
underlines the positive impact of the construction metaphor
in the 1950s, and the development of software engineering
is closely related to this. But if Brooks is correct in
assessing the impact of the new metaphor around growth,
does it mean that the older ones are now operating as
constraints on software development practices? Is the term
software engineering itself now an obstacle? Is it possible
that the engineering metaphor has become part of the
‘software crisis’ rather than a solution for it?

 From Brooks we can understand that there will always be a
‘software crisis’; the cause of many of the problems lies
with the nature of software itself. But that is not to say that
other, less intrinsic factors, are not important: And these
can be confronted and eradicated if they arise from
historical contingencies or accidents. Perhaps the term
software engineering itself may now be one of these
constraints, particularly resulting from the ramifications of
the engineering metaphor from which it is derived.

 Software development is a practice justifiably and
inevitably founded on metaphor. The term software is
itself a metaphor3. But now perhaps the engineering
metaphor has served its purpose, and needs to be
superceded or fundamentally revised.

4 METAPHORS
 The activities surrounding software and software
development are usually defined in terms of the
‘engineering metaphor’.4 The metaphor extends to use of
terms such as construction, development, maintenance,
prototyping, and so on. This terminology and imagery can
be simultaneously intuitively obvious and accompanied by
numerous caveats. Thus it is common for software
developers to talk about maintaining software, but they are
usually well aware that this use of the term is peculiar in
this context, and only partially resonates with the
mainstream engineering use: Similarly terms such as
prototyping, specification, construction and so on.

 It might be thought that this imagery is now so ingrained in
the discipline that it can hardly be controversial. Students,

 3 I am grateful to one of the anonymous reviewers for
pointing this out.

 4For the purposes of this discussion, metaphor will be taken
to mean a 'figure of speech in which a name or descriptive
term is transferred to some object to which it is not
properly applicable' - Shorter OED, 1973.

teachers and practitioners all know that the language used is
not a direct translation from mainstream engineering; so
why raise it as an issue? Can the engineering metaphor
really have a profound impact on software development
practices? Is this a common characteristic of metaphor or
is it specific to software development?

 To those unfamiliar with recent work on the topic,
metaphor might be thought of as a restricted linguistic
device, usually (consciously) employed for its dramatic
effects. But this is an inadequate view, and severely
underestimates the role that metaphor plays in our lives.
Fowler’s Modern English Usage [10] notes that ‘our
vocabulary is largely built on metaphors; we use them,
though perhaps not consciously, whenever we speak or
write’. More recently Lakoff and his colleagues have been
instrumental in establishing the field of metaphor as a key
site for cognitive and social issues, neatly evoked by the
title of Lakoff and Johnson’s book Metaphors we live by.
This work not only underlines the ubiquitous nature of
metaphors, but stresses their role and power in our thought
processes. In Fowler, they are pervasive, but essentially
passive. Recent work now challenges this view, seeing
metaphors as playing an active role in thought and
cognition. In particular, metaphors are now seen as a
crucial aspect in the spread and understanding of new ideas
and concepts.

 Metaphors operate on two distinct subjects; ‘primary’ and
‘secondary’, mapping terms from the latter on to the
former.5 For software engineering, the primary subject is
software development, the secondary is engineering. Max
Black stresses that ‘the secondary subject is to be regarded
as a system rather than an individual thing’ (p27). In other
words, the term engineering is not used in isolation; but
evokes a whole range of concepts and terms involved in the
engineering frame of reference. The metaphorical utterance
then works by ‘projecting upon the primary subject a set of
associated implications ... that are predicable of the
secondary subject’ (p28).

 To illustrate this we can consider the metaphorical aspects
of the phrase software development is an engineering
discipline. The relationship between the primary and
secondary subjects operates in the following manner (using
Black’s words drawn from a different example);

• ‘the presence of the primary subject incites the hearer
to select some of the secondary subject’s properties;
and that

• invites him (sic!) to construct a parallel implication-
complex that can fit the primary subject; and

 5 This overview of metaphor is based largely on Max
Black's essay [4]. Many of the other ideas introduced later
derive from other contributors to the collection edited by
Ortony [17].

80

• reciprocally induces parallel changes in the secondary
subject’ (p28)

This view of metaphor depends on selection by the
hearer/reader of aspects derived from the secondary subject
- i.e. our own (collective) understanding of what is
involved in an engineering discipline. This then leads to
changes in our conception of the secondary subject, as well
as affecting our understanding of the primary one. If we
state the engineering metaphor in terms of ‘software
development is an engineering discipline’, then according
to Black we select aspects of engineering to fit software
development, and also reinterpret engineering as a result of
applying its properties to software development. (This may
partly explain why non-software engineers never seem to
get to grips with what software engineers mean by
engineering.)

The engineering metaphor then leads us to understand that
engineering is a discipline, with all that is implied in terms
of rigour, knowledge claims, expertise and so on: And so
software development can be considered in a similar
fashion. The metaphor then develops in terms of identity,
extension, similarity, analogy, and metaphorical coupling
(linking a series of metaphors).

The engineering metaphor in the context of software
development implies a model of software development
practice, and a whole host of associated concepts. This
model might take the form of seeing software development
actually as an engineering discipline; as like an engineering
discipline; or as bearing some similarity to an engineering
discipline. Disagreements about the definition of the term
software engineering itself reflect these sorts of distinction,
although some originate in different ideas about the nature
of engineering. The key point, however, is that the resulting
models impact upon the software engineering community’s
conceptualization of both the domains of software
development and engineering. If Black’s argument is
correct, software engineers will understand engineering
differently in the light of the use of the metaphor in the
realm of software development. (This would make an
interesting research project, and could now be extended to
other domains from which we have developed metaphors -
e.g. architecture.)

It should be stressed that there is no single, ‘correct’ model
of software development that emanates from the
engineering metaphor, although with time a consensus may
emerge. At present there are a range of interpretations, and
these different interpretations evoke a variety of models of
what constitutes software development. We need to
recognize the nature and characteristics of these models;
uncovering their ramifications, similarities and distinctions
to ensure that they are appropriate and relevant. Aspects
which are widely accepted may be just as interesting as
objects for analysis as those where there is contention: The
former may be seen as indicative of the general consensus

(e.g. software engineering, process models); the latter as
areas of uncertainty and dispute (e.g. artificial intelligence,
formal methods).

We have to understand that the use of generally accepted
terms is not accidental. The terminology surrounding the
engineering metaphor plays a cognitive and constitutive
role for software development.6 As representatives of the
community of software developers, we need to clarify the
impact of this metaphor on our practice, and ascertain if
alternative or additional metaphors might be appropriate to
complement or remedy some of the deficiencies of the
engineering one. We might also wonder why other
metaphors did not gain the currency of the engineering one
– a point to which we shall return in the concluding section.

5 METAPHORS AND COGNITION
Brooks’ argument about a metaphor shift implies that the
construction metaphor (a specialized case of the
engineering one) did not simply emerge in a context where
none had previously existed. There was no literal
understanding of software development prior to the
emergence of the construction metaphor; the preceding
dominant metaphor was concerned with writing software.
There was never a mythic golden age when the term was
understood directly and without the benefit of this linguistic
trope in some form or other.

This puts Brooks together with those who argue that all
cognition employs metaphor. This is an argument that goes
well beyond the scope of this paper, but it certainly seems
to be the case that metaphors are indispensable in contexts
of novelty and innovation. Black maintains that ‘strong
metaphors’ act as indispensable bases for generating
genuine insights about reality. Indeed he contends ‘that
some metaphors enable us to see aspects of reality that the
metaphor’s production helps to constitute’.

It is hardly surprising that metaphors have played, and
continue to play, such a critical role with regard to
software. The tension between its invisibility and
intangibility on the one hand, and its complexity on the
other, almost demands metaphorical mechanisms and
allusions. For a whole variety of aspects associated with
computers and software, metaphors are not simply some
form of linguistic baggage that obscures reality, they are
actually crucial in constituting that reality. (Although this is
not to deny that sometimes metaphors do indeed obscure

 6 The examples are all drawn from English, and other
languages may treat some of the concepts in different
fashion. However, for good or ill the language of software
development is English - albeit the US variant. I would,
however, be interested to hear from readers familiar with
non-English software development communities on the
ways in which the engineering metaphor applies - or
appears inappropriate - in other languages.

81

rather than illuminate.) Moreover this is not a one-way
process. Berman [3] has argued that computers are ‘a
defining technology [developing] links, metaphorical or
otherwise, with a culture’s science, philosophy or literature;
it is always available to serve as a metaphor, example,
model or symbol’.

6 METAPHORS AS GENERATIVE DEVICES
All this should give credence to the relevance of metaphor
to software development. Yet it may still be argued that
software developers clearly understand the inadequacies
and limitations of existing software engineering
terminology. Surely all this linguistic baggage is mere
adornment, and has no substantive impact on the practices
and processes of software development itself? Brooks’
point about the ‘power’ of the construction metaphor
suggests otherwise, as does much recent work on the power
and role of metaphor. Linguistic devices do have an impact,
and it is critical for practitioners to recognize how these
tropes operate; and where necessary, remedy or clarify the
terminology. This sort of effort may lead to the generation
of innovative metaphors, that in turn lead to a reorientation
in a similar fashion to that described by Brooks.

One argument exemplifying the cognitive power of
metaphors - both constraining and liberating - can be found
in the work of Donald Schön [21]who views metaphors as
generative; explicitly undermining the idea that a metaphor
is a ‘kind of anomaly of language, one which must be
dispelled in order to clear the path for a general theory of
reference or meaning’. He proposes that metaphor be
viewed as ‘central to the task of accounting for our
perspectives on the world’ (p137). Metaphorical utterances
such as ‘software development is an engineering
discipline’, are symptoms of a process of ‘carrying over of
frames or perspectives from one domain of experience to
another’.

Schön wishes to direct attention to areas where there are
conflicting frames, demanding ‘frame restructuring’ - i.e.
domains where differences are not explicable or
reconcilable by recourse to facts or fixes, but which
emanate from conflicting frames for the construction of
reality, and where the only recourse is to ‘restructuring,
coordination, reconciliation, or integration of conflicting
frames’. Software engineering is beginning to become the
subject of precisely this sort of conflict; and again this
should be welcomed and developed. The restructuring
process may well result in the emergence of a generative
metaphor that has the same beneficial impact on the wider
community of software developers as the construction one
did on Brooks 40 year ago.

Schön illustrates his argument using the example of a group
of researchers seeking to develop a new paintbrush. The
new product incorporated artificial bristles instead of
natural ones. The brush failed to give the same smooth
finish as its bristle counterpart, leaving a surface that was

marked by discontinuous application of the paint. The
group had observed that natural bristles produced ‘split
ends’, whereas synthetic ones did not; so they split the ends
of the synthetic brush, but with no marked improvement.
Real progress was made, however, when one of the team
remarked that ‘a paintbrush is a kind of pump’; and that
painting really amounts to using the spaces between the
bristles as channels through which the paint can flow. This
directed their attention to a range of new factors,
particularly the curve formed by the bristles of the non-
synthetic brush. What in strict terms might be thought of as
a mistake - a paintbrush is not a pump - results in the
generation of new perspectives, explanations and
inventions.

This is not a simple process that leads to ‘mapping’ from
one domain (pumps) to the other (painting). The initial
response is what Schön refers to as one of ‘unarticulated
perception’. Only later is the relationship between the
domains clarified by interpreting ostensibly different ‘tools’
as examples of a single category.

7 A SOFTWARE ENGINEERING EXAMPLE
Requirements - Capture, Specification, Engineering?
Thus far I have been concerned to explain what metaphors
are, and to stress the influential role they play as an
indispensable component of cognition. Taken together, this
provides justification for the project of analyzing and
partially dismantling or even replacing the engineering
metaphor for software development. To add further weight
to this I wish to consider the example of requirements
determination.

Requirements determination is particularly critical to
software development. In numerous surveys it is the
requirements phase that is seen as the most important and
the most difficult. The standard texts usually view this in
terms of the documents that are produced during and at the
end of this phase - e.g. requirements specification,
requirements definition and so on. The current vogue seems
to be to use the term requirements engineering for the
activities that lead to these products, although Sommerville
notes that ‘the term engineering is used rather loosely’.

Although Sommerville hints at some discomfort with the
‘engineering’ epithet, its use is not too surprizing given that
the terminology surrounding requirements for computer-
based systems is replete with terms drawn from the
engineering metaphor. Requirements definition,
requirements specification, requirements validation, and so
on may appear unremarkable in the 1990s, but their source
is clearly the realm of engineering.

The assumption, often stated as such, is that the
requirements process must be systematic, with some
element of management and formality. Here the
engineering metaphor provides a useful basis for what is
widely agreed to be the most critical and disparate part of

82

software development, and the power of the engineering
metaphor seems beneficial in this context: But there are
drawbacks. The engineering metaphor itself reverberates
beyond the ideas of rigour and formality, with connotations
that obscure key features of the process. This is not a
problem that is restricted to software engineering; it is far
more widespread.

In a remarkable paper Michael Reddy [20] discusses what
he terms the conduit metaphor - a metaphor deeply
embedded in our ideas of communication (and I suspect it
is not restricted to English).

Reddy poses the question ‘What do speakers of English say
when communication fails or goes astray?’. Rather than
use his examples, it will be more pertinent for our purposes
to consider those that might emerge during a requirements
exercise. In such cases it is common to find that clients’
and users’ views have not been fully understood by the
developers; and that developers have not made clear the
trade-offs and constraints to the domain experts.

1 The developers should try to get their thoughts across
better

2 None of the real issues about users demands came
across to me with any clarity

3 We have not given the domain experts a clear idea
about the technological constraints

(These are broadly similar to the examples that Reddy
himself offers.)

At first sight all these examples appear unremarkable,
albeit familiar: And surely they are metaphor-free? Reddy’s
point, however, is that all of them - and many more of their
ilk - are deeply bound to a particular metaphor; and one
with enormous impact. They are all based around the idea
that information is transferred from one point or person to
another. Effective communication then resembles friction-
free, blockage-free flow of information. Good reception
involves extraction and unwrapping.

Reddy offers numerous examples to support his case before
offering what he terms the four categories that constitute
the critical features of the conduit metaphor

(1) ‘language functions like a conduit, transferring
thoughts bodily from one person to another; (2) in
writing and speaking, people insert their thoughts or
feelings in the words; (3) words accomplish the
transfer by containing the thoughts or feelings and
conveying them to others; and (4) in listening or
reading, people extract the thoughts and feelings
once again from the words.’ (p170)

He further points out that one sub-component of this
conduit metaphor characterizes thoughts and feelings as
being ‘ejected ... into an external ideal space, where they
are reified, and take on an independent existence; and from
where they may or may not ‘find their way back into the

heads of living humans’.

The following examples illustrate these features with
regard to software development

1. Get those requirements down on paper before we lose
them.

2. We’ve been trying to pin down that idea for ages.
3. There’s more than a head-full of issues here.
Reddy is not saying that we have to stop using this
metaphor, or that it is erroneous in some fashion; his main
concern is to raise awareness of what is a deeply hidden
metaphor. Furthermore Reddy offers an alternative, in
order to direct attention to the deficiencies and
misconceptions fostered by the conduit metaphor: He terms
it the toolmakers paradigm.

In order to do this justice, and lay the basis for ‘frame
restructuring’, the toolmakers paradigm needs to be
described at some length, using Reddy’s own illustration.
Suppose that there exists a community of people living in a
compound shown schematically in figure 1. Each person
has their own sector, and no two sectors are alike. The hub
of the wheel contains a mechanism for delivering paper
messages from one person to another, and this is crucial in
people passing on their ideas about how best to survive in
terms of building shelters, developing tools, and so on.
People cannot visit each other’s sectors, nor can they
exchange products; only crude blueprints.

Any individual only knows about the existence of others as
an inference from the exchange of pieces of paper, plus
other supporting deductions. Reddy calls this the ‘postulate
of radical subjectivity’.

Suppose that the person living in sector A develops a tool;
a rake for clearing away leaves and other debris. She goes
to the hub and draws three identical sets of instructions for
fashioning this tool, leaving a copy for B, C and D. A’s
environment has a lot of wood and trees in it, but B’s sector
is mostly rocky. So B tries to copy the design for A’s rake,

A

B

C

D

Figure 1

83

using a wooden handle and a stone head: A did not specify
the material for the handle or the head (which were both
wood) since there seemed no alternative. B completes the
‘rake’, but finds it unwieldy and heavy; and wonders at the
strength of A. He is also somewhat bemused at the tool
itself, and guesses that A uses it to clear away small rocks
in her sector. He improvises for his own environment, and
eventually decides that a better form of the tool will be one
that has two prongs to unearth large rocks. This is far more
useful for B’s sector. B then sketches out his tool design
and makes three copies for the others to study.

Persons C and D develop their own tools on the basis of the
plans from A and B. Person A makes a tool along the lines
suggested by B, but can see no use for it in her own rock-
free sector. She also wonders if B has misunderstood her
original design, and so produces a more detailed one for
circulation. The interchange between A and B goes on for
some time, until A comes across two small pebbles in her
sector, and she begins to understand that her assumptions
about wooden materials and organic debris may not be
universally applicable. The result is that A and B develop
more accurate inferences about the other’s environment by
a process of dialogue that gradually makes explicit each
other’s assumptions. This is an iterative and error-ridden
process.

We can now try to understand the requirements phase of
software development from the toolmakers perspective.
This will highlight the inadequacies of many ideas
regarding current practices, all heavily imbued with the
conduit metaphor. Software developers understand that
communication with users, clients and so on is critical; but
this is invariably seen as a flow between domain experts,
users, and developers. Difficulties or failures are described
in terms of blockages or breakdowns in the channelling of
information. The basic conceptual imagery of requirements
engineering rests on the conduit metaphor. The information
about requirements is passed from ‘users’ to ‘developers’;
or in some instances the requirements exist in disembodied
form, and have to be captured.

If the limitations of the conduit metaphor can be
understood, and alternatives such as the toolmakers
paradigm considered, then the issues in requirements
engineering come to be seen in a different light. The
process is not one of passing or capturing information; the
aim is for all those involved to work together to achieve a
coherent and consistent view of the system context, an
objective that is inherently difficult and requires
collaborative input from all participants.

This sheds new light on the requirements phase, which is
always acknowledged to be crucial and difficult. The point
is that while this acknowledgement remains bound up in
the conduit metaphor, the solutions on offer will fail to
resolve the complexities. IEEE Software has focused on
this topic a number of times in recent years, and in 1998

one issue focused on requirements engineering. The guest
editors offered an introduction illustrating the conduit
metaphor. [2] The general editor, on the other hand, offered
a contrasting view that stressed that ‘the field of
requirements (and it no longer matters to me what word
you like to append to requirements to make it sound more
esoteric) has to do with understanding, not documentation’
[8]. This realization had only come to him over the 20
years since had been confronted with a document entitled
‘Software Requirements Specification’. This title of three
nouns took him some time to decode, and resulted in him
viewing requirements as being about documenting the
external behaviour of a system; something which he now
saw as partial and misleading.

In general the other contributors seem more in tune with
Berry & Lawrence, than with Davis. Even those who
mention scenarios and dialogue fail to follow this line of
reasoning to its toolmakers conclusion; and it is
understandable that they seek recourse to traditional
software engineering recommendations such as better tools,
formal descriptions, management and traceability. These
are important, but ignore aspects for which Davis has
prepared the ground when he stresses that anyone ‘involved
in requirements needs human skills, communication skills,
understanding skills, feeling skills, listening skills’
(paraphrasing DeMarco).

How much more effective might the requirements process
become if viewed in terms of a dialogue between distinct
parties, each with their own assumptions and cognitive
processes; where achievement of mutual understanding is a
prime objective, but one which will not be reached without
communicative effort from all participants. Brooks tells us
that changes in metaphor can have real effects on systems;
‘teams can grow much more complex entities in four
months than they can build’. So perhaps a change in the
metaphor about communication during the requirements
process can have a similar impact.

It is perhaps difficult for developers to appreciate the full
impact of these aspects of software development because
they are cognitively tuned to the engineering metaphor, and
so unreceptive to these ways of understanding the issues.
What we need is a collective jolt similar to the one that
Brooks experienced when confronted by the construction
metaphor. But the shift away from the engineering
metaphor is rendered difficult because of the pervasive
assumptions regarding the nature of engineering and the
role of the engineer.

8 MOVING BEYOND ENGINEERING ?
The idea of software engineering has been central to
software development since 1968, although Coplien [7]
wonders if Peter Naur meant it as a joke! Whatever the
motivation might have been, the term has stuck: But why?
Mahoney [15] stresses the importance of the ways in which
the term is used to anchor the field in a specific context;

84

‘every definition of software engineering presupposes some
historical model’. He quotes the definition from the NATO
conference implying ‘the need for software manufacture to
be based on the types of theoretical foundations and
practical disciplines that are traditional in the established
branches of engineering’; and points out that the crucial
terms are undefined. Mahoney argues that the ideas around
the emergence of software engineering develop from
multiple ‘mythic histories’. He identifies three specific
views of engineering itself – applied science, mechanical
engineering, and industrial engineering. This echoes
Goldberg’s argument that there are three foci of software
engineering – reliability, management and productivity
[11].

The historian’s perspective offered by Mahoney, gives
support to those who wish to jettison the engineering
epithet; but there are those such as Parnas who remain
convinced of its value and meaning. He argues that
software engineering be treated as ‘an element of the set
{Civil Engineering, Chemical Engineering, Electrical
Engineering, ...}’. This taxonomy derives from his view
that students in an ‘engineering’ discipline receive and
require a different style of education from those in science-
based ones. ‘Engineers are professionals whose education
prepares them to use mathematics, science, and the
technology of the day to build products that are important
to the safety and well-being of the public.’ This accords
with Hoare’s ideas from the 1970s, where he took
engineers to represent the highest ideals of professionalism
[13]. In this he was reiterating early work on professionals
in general which saw them as imbued with a wide vision, a
doctrine of service to the community, and a large degree of
autonomy in their activities. Professionals had some form
of certification from their own professional body, and this
gave them independence from commercial and political
pressures. Parnas develops the epistemological aspect of
this by arguing that just as electrical engineering has its
scientific basis in physics, so software engineering has its
basis in computer science. But this is simply a 1999 version
of a mythic history that originated in 1968. There is no
need to repeat the arguments that stress the distinctions
between engineering of products and software
development; but Parnas has used an incorrect analogy.
Some aspects of software engineering may well be based
on computer science, but the impetus behind the
development of software is fundamentally powered by
factors derived from the widespread use and commercial
aspects of computers. This is a key distinction, and can be
illustrated using Parnas' own form of argument.

Automotive engineering would be one member of his
engineering set, and clearly has a basis in science - physics,
mechanics etc. But automotive engineering has to involve
more than use of ‘mathematics, science, and the technology
of the day to build products that are important to the safety
and well-being of the public’. Parnas, like Hoare, takes it

for granted that the engineer’s combination of technical
expertise and consummate professionalism are necessary
and sufficient for discipline and practice. Compare this,
however, with Merton who argued that far from being
natural decision-makers, engineers were in fact imbued
with a ‘trained incapacity for thinking about and dealing
with human affairs’ (quoted in [14]).

Parnas’ terms originate in what Boguslaw, in 1965, called
the new utopianism of computer system developers who
‘retain their aloofness from human and social problems
presented by the fact or threat of machined systems and
automation. … People problems are left to the after-the-fact
efforts of social scientists’ [quoted in 12].

Merton and Boguslaw were both social scientists, but this
critique of an inherently narrow rationalism has always
been present in software development (widely understood)
through the writings of people such as Ackoff, Ehn, and
Winograd & Flores [1, 9, 24]. Moreover an implicit
critique of the engineering metaphor was present within the
software development community in the 1960s. Mahoney
alludes to an intervention by Sharp at the 1969 NATO
conference, where he argued that ‘one ought to think rather
in terms of software architecture (= design)’; and that
architects are trained differently from engineers. Sharp
even went as far as arguing that ‘I don't believe for instance
that the majority of what [Edsger] Dijkstra does is theory --
I believe that in time we will probably refer to the 'Dijkstra
School of Architecture'’.

The architectural metaphor was eclipsed by the engineering
one; but it has its own history and has become more
influential in the past decade. Coplien, writing as guest
editor in the issue of IEEE Software immediately preceding
the one devoted to software engineering, in which Parnas’
article is published, notes that in 1961 or 1962 Brooks
raised the idea of an architectural metaphor. So there is
some basis to argue that it predates the engineering one.

Although Coplien locates software architecture as a chapter
in software engineering, he also recognizes the profound
challenge that it poses to current orthodoxy. Thus the
emergence of patterns involves recognition that
‘architecture, like any system discipline, is about
relationships between system parts and … between people’.
This means questioning the strategy of grand designs and
modular construction, because the detail will only emerge
as the project develops. Coplien quotes Gabriel who sees
software development as proceeding by ‘piecemeal growth
and rarely through thorough design. … planned
development alienates those developers who are not also
the planners’.

Schön would describe the architecture or engineering
distinction as one of frame conflict. The solution to this he
terms ‘frame restructuring ...constructing a new problem-
setting story, one in which we attempt to integrate

85

conflicting frames by including features and relations
drawn from earlier stories, yet without sacrificing internal
coherence or the degree of simplicity required for action’.
The architectural metaphor, seen through the writings of
those influenced by Alexander perhaps moves some way
towards this. Coplien seems to be laying the groundwork
for this in his argument that the true basis of software
architecture was lost as software engineering gave in to
‘formal envy’; although this is now being rectified as
developers ‘embrace and capitalize on uncertainty’ and
‘honour the human constraints’.

Any moves towards a resolution, however, are in danger of
being deflected by what McConnell has termed the ‘Gold
Rush’, with the ‘present day equivalent of the tin pan and
the wooden sluice being a desktop computer, fast Net
connection and software compiler’ [quoted in 6]. There is
no chance of enforcing any principles of software
development in a context where code-and-fix is the order of
the day; with developers aiming to meet excess demand.
Again this is not a new problem, although its scale is
probably larger than ever. Mahoney notes that the issue of
‘industrial strength software in a competitive market’ was a
challenge from the start; and he quotes Bauer, in 1971, to
the effect that these issues are ‘too difficult for the
computer scientist’.

Schön demonstrates that frame restructuring and the
making of generative metaphor are closely related. ‘In both
processes, participants bring to the situation different and
conflicting ways of seeing ... there is an impetus to map the
descriptions ... but [they] resist mapping ... the participants
work at the restructuring of their initial descriptions -
regrouping, reordering, and renaming elements and
relations’.

Wittgenstein observed that metaphor is the way we make
sense of things, but it is also the way we produce nonsense
when there is a mismatch between the language that we use
and our practices. We have to avoid nonsense. We have to
start the process of frame restructuring, taking the strengths
of the engineering, the architectural and other relevant
metaphors; simultaneously coping with the commercial
pressures of the ‘code rush’.

Schön offers us a strategy and a conclusion - ‘when we
interpret our problem-setting stories so as to bring their
generative metaphors to awareness and reflection, then our
diagnoses and prescriptions cease to appear obvious and we
find ourselves involved, instead in critical inquiry’. In the
1950s and 1960s the introduction of the engineering
metaphor moved us forward in the critical activity of
developing a discipline for software development; we now
have to move forward to the next stage.

REFERENCES
1. Ackoff, R. Redesigning the Future, Wiley, 1974

2. Berry, D.M. & Lawrence, B. guest editors’ introduction on

Requirements Engineering, IEEE Software, March/April
1998

3. Berman, B. The Computer Metaphor: Bureaucratizing the
Mind, Science as Culture 7, 1989

4. Black, M. More about Metaphor, in Ortony, (ed) 1993

5. Brooks, F.P. No Silver Bullet: Essences and Accidents of
Software Engineering, IEEE Computer, April 1987, pp 10-19

6. Chapman,G. Gold Rush Mindset Undermining Programming
Field, Los Angeles Times,

7. Coplien, J. Reevaluating the Architectural Metaphor: Toward
Piecemeal Growth, IEEE Software, September/October,
1999, pp 40-44

8. Davis, A. The Harmony in Rechoirments, editorial in IEEE
Software, March/April 1998

9. Ehn, P. Work-oriented Design of Computer Artifacts,
Lawrence Erlbaum, 1989

10. Fowler, H.W. A Dictionary of Modern English Usage, 2nd

edition, revised by E Gowers, Oxford, 1965

11. Goldberg, R. Software engineering: An emerging discipline,
IBM Systems Journal, vol25, 3-4, 1986, pp 334-353

12. Greenbaum, J. & Kyng, M. Design at Work, Lawrence
Erlbaum, 1991

13. Hoare, C.A.R. Software Engineering, Computer Bulletin,
December 1975, pp6-7

14. Johnson, T. Professions and Power, Macmillan, 1972

15. Mahoney, M. Finding a History for Software Engineering,
plenary delivered at Foundations of Software Engineering
Conference, November 1998

16. McDermid, J. (ed) Software Engineer’s Reference Book,
Butterworth Heinemann, 1991

17. Ortony, A. (ed) Metaphor and Thought, 2nd edition,
Cambridge, 1993

18. Parnas, D.L. Software Engineering Programs Are Not
Computer Science Programs, IEEE Software,
November/December 1999, pp19-30

19. Pressman, R. Software Engineering: A Practitioner’s
Approach, 3rd edition, McGraw Hill, 1992

20. Reddy, M. J. The conduit metaphor: A case of frame conflict
in our language about language, in Ortony, 1993

21. Schön, D.A. Generative Metaphor: A perspective on problem
setting in social policy, in Ortony, 1993

22. Sommerville, I. Software Engineering, 5th edition, Addison-
Wesley, 1996

23. Wasserman, A. Toward a Discipline of Software
Engineering, IEEE Software, November 1996, pp23-31

24. Winograd, T. & Flores, F. Understanding Computers and
cognition, Addison Wesley, 1986

86

