
Perspectives on Software Engineering

MARVIN V. ZELKOWITZ

Institute for Computer Scwnces and Technology, Natmnal Bureau of Standards, Washington, D.C 20234,
and Department of Computer Science, Unwers~ty of Maryland, College Park, Maryland 20742

Software engineering refers to the process of creating software systems. It applies loosely
to techniques which reduce high software cost and complexity while increasing reliability
and mochfiability. This paper outlines the procedures used in the development of
computer software, emphasizing large-scale software development, and pmpomtmg areas
where problems exist and solutions have been proposed Solutions from both the
management and the programmer points of vtew are then given for many of these
problem areas.

Keywords and Phrases: certification, chmf programmer team, program correctness,
program design language (PDL), software reliability, software development life cycle,
software engineering, structured programming, top-down design, top-down development,
validation, verification

CR Categorws: 1.3, 4.0, 4.6

INTRODUCTION

Software development usually proceeds in
one of two ways: either the programmer
works alone in designing, implementing,
and testing a software system, or he is a
member of a group of from three up to
several hundred, working together on a
large software system. Although software
engineering embraces both approaches,
here we are interested mainly in large-scale
program development.

When the Verrazano Narrows Bridge in
New York City was started in 1959, officials
estimated that it would cost $325 million
and be completed by 1965. It is the largest
suspension bridge ever built, yet it was com-
pleted in November 1964, on target and
within budget [ENR61, ENR64]. No simi-
lar pattern has been observed when we
build software systems larger than those
which had been built previously.

Software is often delivered late. It is fre-
quently unreliable and usually expensive to

maintain. The IBM OS project, which in-
volved over 5,000 man-years of effort, was
years late [BRoo75]. Why is bridge engi-
neering so exact while software engineering
flounders so?

Part of the answer lies in,the greater ease
with which a civil engineer can see the
added complexity of a larger bridge than a
software engineer the complexity of a larger
program. Part of today's "software prob-
lem" stems from our attempt to extrapolate
from personal experiences with smaller pro-
grams to large systems programming proj-
ects.

We begin here by outlining the general
approach used in developing program prod-
ucts, emphasizing aspects which are still
poorly understood. Later, we enumerate
the techniques which have been used to
solve these problems. We do not attempt to
cover all of the relevant topics in depth, but
we give many references for further read-
ing.

Software engineers are currently study-

© 1978 ACM 0010-4892/78/0600/0197500.75

Computing Surveys, Vol 10, No 2, June 1978

198 • M. V. Zelkowitz

CONTENTS

INTRODUCTION
1 STAGES OF SOFTWARE DEVELOPMENT

Reqau'ements Analysm
Specification
Deslgn
Coding
Testing
Operatlon and Maintenance
Themes of Software Engineering

2 MANAGEMENT ISSUES
Size and Cost Control

Project Personnel
Esttrnatton Techn~ues
Mdestones
Development Tools

Rehabthty
Conceptual Integrtty
Continual System Vahdatton

3 PROGRAMMER ISSUES
Verdicatmn and Vahdatmn

Automated Tools
CertLficatton
Formal Testtng
Mean Tame Between Fadure
Error Days

Programmmg Techmques
Structured Programming
System Destgn

Performance Issues
Algorithm Analysts
Efftctency

Theory of Specfficatmns
SUMMARY
ACKNOWLEDGMENTS
REFERENCES

ing the causes of these problems and the
mechanisms of software development.
They seek both constraints on program-
ming which will render software less expen-
sive and more reliable and also the theoret-
ical foundations upon which programs are
built. Software engineering is not the same
as programming, although programming is
an important component. It is not the study
of compilers and operating systems, al-
though compiler writers and operating sys-
tem implementors use similar techniques.
It is not electrical engineering, although
electronics does provide the basis for imple-
menting the computer [JEFF77].

Software engineering is interdisciplinary.
It uses mathematics to analyze and certify
algorithms, engineering to estimate costs
and define tradeoffs, and management sci-
ence to define requirements, assess risks,
oversee personnel, and monitor progress.

1. STAGES OF SOFTWARE DEVELOPMENT

The complexity of a large software system
surpasses the comprehension of any one
individual. To better control the develop-
ment of a project, software managers have
identified six separate stages through which
software projects pass; these stages are col-
lectively called the software development
life cycle:

* Requirements analysis;
a Specification;
e Design;
* Coding;
* Testing;
* Operation and maintenance.

Figure 1, a pie chart, shows the approxi-
mate amount of time each stage takes. The
stages are discussed in the following sub-
sections.

Requirements Analysis

This first stage, curiously absent from many
projects, defines the requirements for an
acceptable solution to the problem. The
statement "Write a COBOL program of not
more than 50,000 words to produce payroll
checks" is not a requirement; it is the par-
tial specification of a computer solution to
the problem. The computer is merely a tool
for solving the problem. The requirements
analysis focuses on the interface between

INTEGRATION

FIGURE 1. E f f o r t r e q u i r e d o n v a r i o u s d e v e l o p m e n t
a c t i v i h e s (e x c l u d i n g m a i n t e n a n c e)

Computing Surveys, Vol I0, No 2, June 1978

Perspectives on Software Engineering • 199

the tool and the people who need to use it.
For example, a company may consider sev-
eral methods of paying its employees: 1)
pay employees in cash; 2) use a computer
to print payroll checks; 3) produce payroll
checks manually; or 4) deposit payroll di-
rectly into employees' bank accounts.

Other aspects, such as processing time,
costs, error probability, and chance of fraud
or theft, must be considered among the
basic requirements before an appropriate
solution may be chosen. A requirements
analysis can aid in understanding both the
problem and the tradeoffs among conflict-
ing constraints, thereby contributing to the
best solution.

Hard requirements and the optional fea-
tures must be distinguished. Are there time
or space limitations? What facilities of the
system are likely to change in the future?
What facilities will be needed to maintain
different versions of the system at different
locations?

The resources needed to implement the
system must be determined. How much
money is available for the project? How
much is actually needed? How many com-
puters or computer services are affordable?
What personnel are available? Can existing
software be used? After the first questions
are answered, project schedules must be
planned. How will progress be controlled
and monitored? What has been learned
from previous efforts? What checkpoints
will be inserted to measure this progress?
Once all these questions have been an-
swered, specification of a computer solution
to the problem may begin.

Specification

While requirement analysis seeks to deter-
mine whether to use a computer, specifi-
cation (also called definition [FIFE77])
seeks to define precisely wha~ the computer
is to do. What are the inputs and outputs?
In the payroll example: Are employee rec-
ords in a disk file? On tape? What is the
format for each record in the file? What is
the format for the output? Are checks to be
printed? Is another tape to be written con-
taining information for printing the checks
offline? Will printed reports accompany the

checks? What algorithms will be needed for
computing deductions such as tax, unem-
ployment and health insurance, or pension
payments?

Since commercial systems process con-
siderable amounts of data, the database is
a central concern. What files are needed?
How will they be formatted, accessed, up-
dated, and deleted?

When the new system supersedes an
older process (for example, when an auto-
matic payroll system replaces a manual sys-
tem), the conversion of the existing data-
base to the new format must be part of the
design. Conversion may require a special
program which is discarded after its first
and only use. Since the company may be
using the older system in its day-to-day
operation, bringing the new system online
presents a problem. Can the old and the
new systems run side by side for awhile?

The answers to these questions are set
forth in the functional specification, a doc-
ument describing the proposed computer
solution. This document is important
throughout the project. By defining the
project, the specification gives both the
purchaser and the developer a concrete de-
scription. The more precise the specifica-
tions are, the less likely will be errors, con-
fusion, or recriminations later. The specifi-
cations enable test data to be developed
early; this means that the performance of
the system can be tested objectively, since
the test data will not be influenced by im-
plementation. Because it describes the
scope of the solution, this document can be
used for initial estimates of time, personnel,
and other resources needed for the project.

These specifications define only what the
system is to do, but not how to do it. De-
tailed algorithms for implementation are
premature and may unduly constrain the
designers.

Design

In the design stage, the algorithms called
for in the specifications are developed, and
the overall structure of the computer sys-
tem takes shape. The system must be di-
vided into small parts, each of which is the
responsibility of an individual or a small

Computing Surveys, Vol 10, No 2, June 1978

200 • M . V. Zelkowitz

team. Each such module thus defined must
have its constraints: its function, size, and
speed.

As submodules are specified, they are
represented in a tree diagram showing the
nesting of the system's components. Figure
2 illustrates this for a typical compiler. This
illustration, sometimes called a baseline
diagram, is not by itself an adequate spec-
ification of the system.

Because the solution may not be known
when the design stage starts, decomposition
into small modules may be quite difficult.
For older applications {such as compiler
writing) this process may become standard-
ized, but for new ones {such as defense
systems or spacecraft control) it may be
quite difficult.

A common problem is that the buyer of
a system often does not know exactly what
he wants, especially in state-of-the-art
areas such as defense systems. As he sees
the project evolve, the buyer often changes
the specifications. If this occurs too often,
the project may flounder. We discuss this
problem later.

Coding
Coding is usually the easiest stage. High-
level languages and structured program-
ming simplify the task. In one study,
Boehm [BOEH75] found that 64% of all

DRIVER

I I

J PARSER J I CODE GENERATOR

I

I I--°. I SCANNER TABLE PROCESS ROUTINES
i

READ J PROCESS

FIGURE 2. Sample baseline diagram for a compiler.

errors occurred in design, but only 36% in
coding. Hamilton and Zeldin [HAMI76] re-
port that in the NASA Apollo project about
73% of all errors were design errors. We
have mastered coding better than any other
stage of software development.

Testing

The testing stage may require up to half of
the total effort. Inadequately planned test-
ing often results in woefully late deliveries.

During testing the system is presented
with data representative of that for the
finished system; thus test data cannot be
chosen at random. The test plan should, in
fact, be designed early and most of the test
data should be specified during the design
stage of the project.

Testing is divided into three distinct op-
erations:

1) Module testing subjects each module
to the test data supplied by the pro-
grammer. A test driver simulates the
software environment of the module
by containing dummy routines to take
the place of the actual subroutines
that the tested module calls. Module
testing is sometimes called unit test-
ing. A module that passes these tests
is released for integration testing.

2) Integration testing tests groups of
components together. Eventually, this
procedure produces a completely
tested system. Integration testing fre-
quently reveals errors missed in mod-
ule tests. Correcting them may ac-
count for about a quarter of the total
effort.

3) Systems testing involves the test of
the completed system by an outside
group. The independence of this
group is important.

The buyer may also insist on his own
systems test, or acceptance test, before for-
mally accepting the product. Comparison
of the performance of several systems (such
as those of a given software product already
available from several sources) is called
benchmark testing.

During testing, many criteria are used to
determine correct program execution.
Among other important criteria, the pro-

Computing Surveys, Vol. 10, No. 2, June 1978

Perspectives on Software Engineering • 201

gram is considered correct if:

1) every statement has been executed at
least once by the test data;

2) every path through the program has
been executed at least once by the test
data; and

3) for each specification of the program,
test data demonstrate that the pro-
gram performs the particular specifi-
cation correctly.

These three different criteria show that
there is no single acceptable criterion defin-
ing a "well-tested" program. Goodenough
and Gerhart [GooD76] proposed a set of
consistent definitions for "testing" and
showed that some of these definitions of
testing are, in theory, insufficient. We re-
turn to this subject later. For a survey of
good testing techniques, see [HuAN75].

Closely related to testing are verification
and validation (V/V). A system is validated
when testing shows that the system per-
forms according to its specifications. A sys-
tem is verified when it has been proved to
meet its specifications. Current technology
is inadequate for achieving both these ob-
jectives. A validated system may misbe-
have for cases not included in the test data.
A verified system is correct relative only to
the initial specifications and assumptions
about the operating environment; formal
proofs tend to be lengthy, making them
subject to error or incredulity. Certification
sometimes refers to the overall process of
creating a correct program by validation
and verification.

In certifying a program, three terms must
be distinguished. A failure in a system is an
event which marks a violation of the sys-
tem's specifications. An error is an item of
information which, when processed by the
normal algorithms of the system, produces
a failure. Since error recovery may be built
into the program (for example, ON units in
PL/I), not every error will produce a failure.
A fault is a mechanical or algorithmic de-
fect which generates an error (for example,
a programming "bug") [DENN76a].

Reliability is a concept which must not
be confused with correctness. A correct pro-
gram is one that has been proved to meet

its specifications. In contrast, a reliable
program need not be correct, but gives ac-
ceptable answers even if the data or envi-
ronment do not meet the assumptions made
about them. We would like a system to be
highly robust, that is, to accept a large class
of input data and to process it correctly
under adverse conditions. Parnas [PARN75]
describes a correct system as one that is
free from faults and has no errors in its
internal data. A program is reliable if fail-
ures do not seriously impair its satisfactory
operation.

Operating systems with "fail-soft" pro-
cedures illustrate the difference between
reliability and correctness. A detected error
causes the system to shut down without
losing information, possibly restarting after
error recovery. Such a system may not be
correct because it is subject to errors, but
it is reliable because of its consistent oper-
ation. A real-time program may be correct
as long as a sensor reports correctly, but it
may be unreliable if bad sensor readings
have not been considered.

Operation and Maintenance

Figure 1 shows the disposition of software
costs in developing a new project. But this
can be the wrong chart! The activities noted
in Figure 1 are only 25% to 33% of the effort
required during the life of the system. Fig-
ure 3 illustrates that maintenance costs ul-
timately dwarf development costs.

No computer system is immutable. Since
a buyer seldom knows what he wants, he
seldom is satisfied. Probably, he will re-
quest changes in the delivered system. Er-
rors missed in testing will later be discov-
ered. Different installations will need spe-
cial modifications for local conditions. The
management of multiple copies of a system
is another difficult problem that must be
handled early in development. Once the
first line of code is written, the structure of
the resulting maintenance operation may
already be fixed, so it is best to plan for it
then.

The division of effort indicated in Figure
3 greatly affects system development. Be-
cause of hidden maintenance costs, tech-
niques that rush development and provide

Computing Surveys, Vol. 10, No 2, June 1978

202 • M. V. Z e l k o w i t z

INTEGRATION TESI 7% MODULE TEST 8 ~-
CODE 7 %

DESIGN 5 ~ ~
SPECIFICATIONS 3 /
REQUIREMENTS 3 % ~

FIGURE 3. T rue effort on m a n y large-scale software
sys tems .

for very early initial implementation may
be trading early execution for a much more
extensive maintenance operation.

The maintenance problem is sometimes
referred to as the "parts number explosion."
For example, a certain system contains
components A, B, and C. Installation I finds
and reports an error. The developer fixes
the error and sends a corrected module A'
to all installations using the system.

Installations II and III ignore the replace-
ment and continue with the original system.
Installations I and II discover another error
in module A. The developer must now de-
termine whether both of these errors are
the same, since different versions of module
A are involved. The correction of this error
involves correction of both A' (for I) and A
(for II) yielding A" and A " . There are now
three versions of the system.

To avoid this growth, systems often re-
ceive updates, called releases, at fLxed in-
tervals. A useful tool for dealing with myr-
iad maintenance problems is a "systems
database" started during the specifications
stage. This database records the character-
istics of the different installations. It in-
cludes the procedures for reporting, testing,
and repairing errors before distributing the
corrections.

Themes of Software Engineering

It should be clear that each software devel-
opment stage may influence earlier stages.
The writing of specifications gives feedback
for evaluating resource requirements; the

design often reveals flaws in these specifi-
cations; coding, testing, and operation re-
veal problems in design. The goals of soft-
ware engineering are thus to:

• Use techniques that manage system
complexity.

• Increase system reliability and correct-
ness.

• Develop techniques to predict software
costs more accurately.

In the following sections, we discuss ap-
proaches to some of these problems. The
list of techniques is divided into manage-
ment and programmer issues. Management
issues concern the effective organization of
personnel on a project. Programmer issues
concern the techniques used by individual
programmers to improve their perform-
ance.

2. MANAGEMENTISSUES

A manager controls two major resources:
personnel and computer equipment. This
section surveys techniques for optimizing
the use of these resources.

Size and Cost Control

A project may fail when management is not
aware of developing problems; a year's de-
lay comes "one day at a time" [BRoO75].
Faced with catastrophic failure (for exam-
ple, needed hardware is delayed six
months), a resourceful manager can usually
find alternatives. However, it is easy to
ignore day-to-day problems (such as sick
employees or many errors during testing).

Most problems occur at the interfaces of
modules written by different programmers.
Since the number of such interfaces is on
the order of the square of the number of
individuals involved, the problem becomes
unwieldy when the number of persons in a
development group grows to four or more.

As an example of the communications
problem, assume that a single programmer
is capable of writing a 5,000-line program in
a year, and that a programming system
requires about 50,000 lines of code and is to
be completed in two years. Five program-
mers would seem to be sufficient (see Fig-
ure 4a).

Computing Surveys, Vol 10, No 2, June 1978

Perspectives on Sof tware Engineer ing • 203

However, the five programmers must
communicate with one another. Such com-
munication takes time and also causes some
loss in productivity since finding misunder-
stood aspects will require additional testing.
For this simple analysis, assume that each
communication path "costs" a programmer
250 lines of code per year. Each of the five
programmers, therefore, can produce only
4,000 lines per year and only 40,000 lines
are completed within two years (see Figure
4b).

This means that eight programmers pro-
ducing 3,250 lines per year are actually
needed in order to produce the required
50,000. A manager is required for direction
of this large effort. Therefore, in summary,
eight programmers and a manager, each
producing an average of 3,000 lines per year,
are actually needed (see Figure 4c).

As we shall see, simply counting lines of
code is not a good way to estimate produc-
tivity. The figures in this example are only
given to illustrate a point, but they are
representative of the problem. There are
also techniques designed to limit this com-
munications "exolosion" and to increase
programmer productivity.

ProJect Personnel

Software can usually be divided into three
categories: 1) control programs (such as
operating systems), 2) systems programs
(such as compilers), and 3) applications
programs (such as file management sys-
tems). A single programmer working on a
control program can produce about 600
lines of code per year, whereas he can pro-
duce about 2,000 lines if working on a sys-
tems program and about 6,000 if working
on an applications program [WoLv74]. The
type of task certainly affects the productiv-
ity that can be expected from a given pro-

A

FIGURE 4(a) Single projects. 5,000 hnes per year =
50,000 lines m two years (no c o m m u m c a t l o n be-
tween p rogrammers)

B

FIGURE 4(b). F ive -member group' 4,000 hnes per
year = 40,000 lines m two years (ten communica t ion
pairs}.

C ()

\ ()

A

}
f ~

/ \
FIGURE 4(C). N i n e - m e m b e r team: 3,000 lines per year

= 50,000 lines in two years (36 communica t ion
pairs).

grammer. However, as the previous exam-
ple demonstrates, the organization of per-
sonnel also affects performance. For exam-
ple, with the approach of deadlines, docu-

CompuUng Surveys, Vol 10, No 2, June 1978

204 • M. V. Z e l k o w i t z

mentation is often given lower priority.
However, since 70% of the total system cost
may occur during the maintenance state
(where the documentation is heavily used),
this may be a false economy of effort.

Use of a librarian is one way to avoid this
problem. A librarian provides the interface
between the programmer and the com-
puter. Programs are coded and given to the
librarian for insertion into the online proj-
ect library. The actual debugging of the
module is carried out by the programmer,
but changes to the official module in the
library are made by the librarian. The use
of a library is further enhanced when an
online data management system is used.

The use of a librarian has another bene-
ficial effect. All changes in modules in the
project library are handled by one individ-
ual and are easy to monitor; they are often
reviewed by the project manager before
insertion. This prevents "midnight
patches" from being quickly incorporated
into a system and forces the programmer to
think carefully about each change. It also
gives the manager disciplined product con-
trol and helps with audit trails.

On larger projects, a technical writer may
perform much of the documentation, thus
freeing programmers for the tasks for which
they are most skilled.

The culmination of this trend is the c h i e f
p r o g r a m m e r t e a m concept developed by
IBM [BAKE72]. The concept recognizes
that programmers have different levels of
competence; therefore, the most competent
should do the major work, while others
function in supporting roles. As the earlier
example shows, interfacing problems
greatly reduce programmer productivity.
The chief programmer team is one way of
limiting this complexity.

The chief programmer, an excellent pro-
grammer and a creative and well-disci-
plined individual, is the head of the team.
He may be five or more times more pro-
ductive than the lowest member of the
team [BOEH77]. He functions as the tech-
nical manager of the project, designs the
system, and writes the top-level interfaces
for all major modules.

If a project is large, a team may also have
an administrative manager to handle such

responsibilities as budgeting time, vaca-
tions, office space, and other resources, and
reporting to upper-level management. The
administrative manager often administers
several programming teams.

The backup programmer works with the
chief programmer and fills in details as-
signed by the chief programmer. Should
the chief programmer leave the project, the
backup programmer would take over. This
means that he also must be an excellent
programmer. The backup programmer also
fulfills an important role by providing the
chief programmer with a peer with whom
he can discuss the design.

There are also two or three junior pro-
grammers assigned to the team to write the
low-level modules defined by the chief pro-
grammer. The term "junior" in this context
means "less experienced," not "less capa-
ble." As Boehm states, the best results oc-
cur with fewer and better people.

Using the example illustrated by Figure
4, a chief programmer team of five individ-
uals has only seven communications paths,
and the chief programmer, being that rare
individual, can produce more than his
quota of 5,000 lines (see Figure 5). Thus
productivity per programmer could be
greater than 5,000 lines per year, instead of
the previous figure of only 4,000.

The team has a librarian to manage the
project l ibrary--both the online module li-
brary and the offiine project documentation
(also called the project notebook). The
project notebook contains, among other
things, records of compilations and test
runs of all modules. It is important to the
team structure, since all development is
now accountable and open for inspection,
and code is no longer the "private property"
of any individual programmer.

Programmers have traditionally been re-
luctant to exhibit their products until com-
pletion, since discovered errors have tradi-
tionally been viewed as a personal failure.
The absurdity of this approach is clear
enough. If the ego element is removed from
programming, programmers may openly
ask others for advice when they need it,
instead of trying to solve all problems them-
selves [WEIN71].

The team may include other supporting

Computing Surveys, Vol. 10, No 2, June 1978

Perspect ives on Sof tware Eng ineer ing • 205

FIGURE 5. Fewer communica t ions pa t h s in a chief
p rog rammer t eam.

personnel such as secretaries and technical
writers. Experience shows that ten is the
upper bound to team size.

This structure, however, will not solve all
problems in development. With a smaller
number of individuals involved, compe-
tence is crucial. It is not possible to "work
around" a nonproductive individual as one
might do in a large project. There are also
extremely large projects where a group of
ten is simply too small to tackle develop-
ment. Larger teams are not efficient.

A man-month, or the amount of work
performed by one individual in one month,
is a deceptive measure for estimating proj-
ect productivity. A project requiring four
programmers for a year cannot be com-
pleted by 48 programmers in one month.
The example of the 50,000 line system
needed in two years shows some of the
problems inherent in trying to exchange
programmers for time. "Adding manpower
to a late software project makes it later"
[BROO75]. New personnel divert existing
personnel needed to train them; they re-
quire more supervision; they complicate
communication and interfere with th~ de-
sign since they are unfamiliar with the proj-
ect structure.

However, man-months do serve a pur-
pose as a useful measure of project costs.
By adding more data, such as the rate of
using man-months, accurate cost estima-
tion techniques can be utilized. These are
explained in the following subsection.

Estimation Techniques

One of the most important aspects of engi-
neering is estimating the resources needed

to complete a project. As previously men-
tioned, the Verrazano Narrows Bridge in
New York City was completed at the pro-
jected time and within the estimated
budget. How was such accuracy achieved?

Most engineering disciplines have highly
developed methods of estimating resource
needs. One such technique is the following
[GALL65]:

1) Develop an outline of the require-
ments from the Request for Quotation
(RFQ);

2) Gather similar information, for ex-
ample, data from similar projects;

3) Select the basic relevant data;
4) Develop estimates;
5) Make the final evaluation.

Although this approach has been advo-
cated for software development, software
projects have difficulty passing Step i
[WOLV74]. Engineers have been building
bridges for 6,000 years but software systems
for only 30 years. Prior experience to de-
velop the true requirements may not be
available. Moreover, with very little back-
ground to build on, the developer has little
knowledge of similar systems to use in eval-
uation (Step 2).

In developing the estimates (Step 4), the
following tasks must be undertaken:

4a) Compare the project to similar pre-
vious projects.

4b) Divide the project into units and
compare each unit with similar units;

4c) Schedule work and estimate re-
sources by the month.

4d) Develop standards that can be ap-
plied to work.

Note that for Step 4a), the lack of pre-
vious experience presents a continuing
problem. Also, for Step 4d), an adequate
set of standards does not yet exist.

Experience is the key to accurate esti-
mation. Even civil engineering projects may
fail badly when established techniques are
not followed. Although the Verrazano Nar-
rows Bridge was the world's largest suspen-
sion bridge, its engineers had much experi-
ence with other similar structures. On the
other hand, the Alaskan oil pipeline was
estimated to cost $900 million, yet by mid-

Computing Surveys, Vol. 10, No. 2, June 1978

206 • M. V. Zelkowitz

1977 the cost had risen past $9 billion
[ENR77]. In this case, the design was al-
tered continuously as the federal govern-
ment imposed new environmental stan-
dards (that is, changing specifications), and
new technologies were needed to move
large quantities of oil in a cold weather
environment. Previous experience was only
marginally helpful.

Results from computer hardware relia-
bility theory are now starting to play a role
in software estimation [PUTN77]. The cu-
mulative expenditures over time for large-
scale projects have been found to agree
closely with the following equations:

E = K (1 - e -'~t2)

where E is the total amount spent on the
project up to time t, K is the total cost of
the project, and a is a measure of the max-
imum expenditures for any one time period.
This relationship is usually expressed in its
differential form, called a Rayleigh curve:

E ' = 2 K a t e -at 2

where E' is the rate of expenditures, or the
amount spent on the project during year
number t. Since 70% of the cost of a project
occurs during the maintenance stage, it is
not surprising that the maximum expendi-
tures will occur just before the product is
released, a time when it is usually assumed
that the effort is winding down before ter-
mination (see Figure 6).

The Rayleigh curve has two parameters,
K and a; however, a system can be de-
scribed by three general characteristics: 1)
total cost, 2) rate of expenditure, and 3)

~DEVELOPMENT~ T d ~MAINTENANCE~
ACTIVITIES ACTIVIT~E$

TtME

FIGURE 6. Yearly ra te of expendi tures approx imates
the Rayle igh curve. To ta l cost {area unde r curve)
= K , a = 1 / T d 2, ra te = 2 K a t e -"t2

completion date. Two of these characteris-
tics are enough to determine the constants
K and a. When a project is initiated, the
proposed budget is an estimate of K, and
the available personnel permits a to be
calculated. Assuming that requirement
analysis determines that these figures rep-
resent an accurate assessment of the com-
plexity of the problem, the estimated com-
pletion date (the date when the expendi-
tures reach a maximum} can be computed,
and thus cannot be set arbitrarily during
the requirements or specification stage.
This method provides the basis for a cost
estimation strategy that has been applied
to smaller projects in the 100 man-month
range [BAsI78]. We may be close to a math-
ematical theory of cost estimation which
will greatly reduce our need to "guess" at
project costs.

M i l e s t o n e s

A milestone is the specification of a demon-
strable event in the development of a proj-
ect. Milestones are scheduled by manage-
ment to measure progress. "Coding is 90%
complete" is not a milestone because the
manager cannot know when 90% of the
code is complete until the project itself is
complete.

There are many candidates for mile-
stones: publication of the functional speci-
fications, writing of individual module de-
signs, module compiling without errors,
units that have been tested successfully,
and so on. Milestones are scheduled fairly
often to detect early slippage. PERT charts
may be used to estimate the effects of slip-
page in one stage on later stages.

Reporting forms can give information
useful for estimating when a future mile-
stone will be reached. A general project
summary, describing such overall charac-
teristics as system size, cost, completion
dates, or complexity, can be resubmitted
with each milestone. Change reports can be
submitted each time a module is altered.
The use of a librarian probably means that
such a form already exists. Weekly person-
nel and computer reports monitor expend-
itures, Although they add a minor overhead
to the project, the information helps man-
agement keep abreast of progress [BASI78,
WALS77].

Computing Surveys, Vol 10, No 2, June 1978

Perspectives on Software Engineering • 207

Development Tools

Compilers and certain debugging facilities
have been available for some time. In con-
trast, other programming aids are new and
experience with them is less estensive.
Cross referencing, attribute listings, and
symbolic storage maps are examples of such
aids. Auditors or database systems can help
to control the organization of the develop-
ing system. The Problem Statement Lan-
guage/Problem Statement Analyzer
(PSL/PSA) of the ISDOS project of the
University of Michigan is one of the fwst
database systems for providing a module
library for storing source code, and includes
a language for specifying interfaces in sys-
tem design which can be checked automat-
ically ITEm77]. RSL/SSL is a similar sys-
tem designed to specify requirements and
to design interfaces via a data management
system [DAw77].

An alternative approach is the Program-
mer's Workbench developed by Bell Tele-
phone Laboratories [DOLo76]. A PDP 11
based system provides a set of support rou-
tines for module development, library
maintenance, documentation, and testing.
Proper use of these facilities allows access-
ing information in an easier, controlled en-
vironment.

Reliability

Conceptual Integrity

Conceptual integrity, uniformity of style
and simplicity of structure, are usually
achieved by minimizing the number of in-
dividuals in the project. A chief program-
mer team greatly enhances conceptual in-
tegrity.

A small group minimizes contradictory
aspects of a design. In the PL/I language,
for example, the PICTURE attribute dec-
laration may be abbreviated as either PIC
or P, but in format specifications it may
only be P [ANSI76]. In F O R T R A N , the right
side of an assignment statement can be an
arbitrary arithmetic expression, but DO
loop indices must be integer constants or
variables, and subscripts to arrays are lim-
ited to seven basic forms [ANSI66]. These
are difficult idiosyncracies to remember.
They illustrate a lack of conceptual integ-

rity that can arise when many people with
different objectives become involved in a
project. A consistent design is less prone to
errors because the user can follow a simple
set of rules.

Continual System Validation

A walkthrough is a management review to
discover errors in a system. In one study,
TRW discovered that the cost of fixing an
error at the coding stage is about twice that
of fixing it at the design stage, and catching
it in testing costs about ten times as much
as it does in design [BOEH76].

A walkthrough is scheduled periodically
for all personnel. In attendance are the
project manager (chief programmer), the
person reviewed, and several others knowl-
edgeable about the project. One section of
the system is selected for review and each
individual is given information about that
section (for example, design document for
a design walkthrough, code for a coding
walkthrough) before the review. The per-
son being reviewed then describes the mod-
ule under study.

The walkthrough is intended to detect
errors, not to correct them. Also, the
walkthrough is brief--not more than two
hours. By explaining the design to others,
the person reviewed is likely to discover
vague specifications or missing conditions.

An important point for management is
that the walkthrough is not for personnel
evaluation. If the person reviewed perceives
that he is being evaluated, he may attempt
to cover up problems or present a rosy
picture.

An informal yet very effective version of
the walkthrough is code reading. A second
programmer reviews the code for each mod-
ule. This technique frequently turns up er-
rors when the second reader, failing to un-
derstand some aspects of the code, asks the
author for an explanation.

3. PROGRAMMER ISSUES

Each stage of the software development life
cycle has its own set of problems and solu-
tions. The most advanced techniques apply
to the last stages; the first stages are the
least developed. For example, testing and

Computmg Surveys, Vol. 10, No. 2, June 1978

208 • M. V. Zelkowi tz

debugging problems are apparent to every
programmer; these tools are the oldest and
most advanced. Techniques for improving
coding were developed next. The most re-
cent developments have related to require-
ments and specifications. Although many
technical problems have not been solved,
an effective methodology is emerging. Some
of these techniques are presented in the
following subsections.

Verification and Validation

Verification and validation (module and in-
tegration testing) of a system occupy about
half of the development time of a project.
Many debugging aids have been developed
to facilitate this effort; most are imple-
mented as programs to test some feature of
a system.

Automated Tools

The earliest and most primitive debugging
tools were the dump and the trace. A d u m p
is a listing of the contents of the machine's
memory. This listing can often reveal un-
intelligible data or errors. Unfortunately, a
dump may not be taken until long "after
the fact" and the cause of the error may not
then be apparent. A trace is a printout
showing the values of selected variables
after each statement is executed. It may
help a programmer to discover errors.

These techniques are not usually very
effective because they supply much data
with little or no interpretation. More ad-
vanced methods are needed to reduce this
data to an intelligible form.

Flowgraph analyzers are capable of de-
tecting references to variables which are
never initialized or never reused after re-
ceiving a value; these usually indicate er-
rors. Test data generators are also avail-
able. Assertion checkers validate that given
conditions are true at indicated points of a
program. Automatic verification systems
have been implemented for small languages
[KING69] and symbolic execution has been
proposed as a practical means for validating
programs in a more complex language. The
PSL/PSA system is an example of a tool
for assisting in design and specification.
Symbolic dumps and traces are generated

with compilers like PL/C [CoNw73] or
PLUM [ZELK75]. Ramamoorthy and Ho
[RAMA75] survey many of these tools.

Cerhfication

Programs can be verified at several levels.
Conway [CoNW78] lists eight different ver-
ification conditions:

• A program contains no syntactic er-
rors.

• A program contains no compilation er-
rors or faults during program execu-
tion.

• There exist test data for which the
program gives correct answers.

• For typical sets of test data, the pro-
gram gives correct answers.

• For difficult sets of test data, the pro-
gram gives correct answers.

• For all possible sets of data which are
valid with respect to the problem spec-
ification, the program gives correct an-
swers.

• For all possible sets of valid test data
and all likely conditions of erroneous
input, the program gives correct an-
swers.

• For all possible input, the program
gives correct answers.

Some people are optimistic that one day
complete automatic program verification
will be possible. Today's tools operate a
posteriori, demonstrating that a given pro-
gram works. Tomorrow's tools will also op-
erate a priori, helping to develop programs
which are correct before they are ever run.
Such tools can reduce the amount of testing
required for a completed project [DIJK76].

Verification techniques have the follow-
ing general structures. A program is repre-
sented by a flowchart. Associated with each
arc in the flowchart is a predicate, called an
assertion. If A, is the assertion associated
with an arc entering statement S, and Aj
is the assertion on the arc following the
statement, then the statement "If A, is true,
and if statement S is executed, then asser-
tion Aj will be true" must be proved (see
Figure 7).

This process can be repeated for each
statement in a program. If A1 is the asser-
tion immediately preceding the input node
to the flowchart (that is, the initial asser-

Computing Surveys, Vol I0, No 2, June 1978

Perspectives on Software Engineering

I ~ I "
PREDICATE A, PREDICATE A I

FIGURE 7. Assertions A, and As surround each state-
ment of a program.

tion), and if An is the assertion at the exit
node (for example, the final assertion), then
the statement "If AI is true, and the pro-
gram is executed, then A, is true" will be
the theorem that states that the program
meets its specifications (AI and An) (see
Figure 8). This approach was formalized by
Hoare [HOAR69] who defined a set of ax-
ioms for determining the effects upon the
assertions (preconditions and postcondi-
tions) by each statement type in a language.
Thus verifying program correctness re-
duces to proving a theorem of the predicate
calculus.

Certification technique development is
still in a preliminary stage and does not
meet the challenge of a modern large sys-
tem. In addition, axiomatic certification is
weak in the sense that the output assertion
is proved true only if the program termi-
nates. Axiomatic methods are incapable of
proving termination. However, termination
can often be proved informally by the pro-
grammer.

A typical approach to proving that pro-
gram loops terminate is the following:

1) Find some number P that is always
nonnegative within the loop.

2) Show that for each execution of the
loop, P is decremented by at least a
fixed amount.

If both conditions are always true, the loop
must terminate before P becomes negative.
A programmer who uses such rules, even
informally, will seldom write nonterminat-
ing loops.

Consider this program fragment:

whi l e x<y do

x := x + l

end

Let quantity P be the expression y-x , and
let P(i) refer to the value of P during the
ith execution of the loop. Because x<y must
be true for each next iteration, y - x is al-

• 209

ways nonnegative and condition 1) is satis-
fied for each execution of the loop. Since
the loop contains the statement x := x+l ,
P(i+I) = P(i) - I , satisfying condition 2).
Therefore the loop must terminate.

Certification will not solve all our soft-
ware problems, although it is an important
tool. Gerhart and Yelowitz [GERH76] have
shown that there are many published "cer-
tified" programs that contain errors. Even
experts err.

Formal Testing

Goodenough and Gerhart [GooD75] have
clarified the concepts of testing. A domain
is the set of permissible inputs to a program,
and a test is a subset of the domain. A
testing criterion specifies what is to be
tested (for example, specifications, all state-
ments, all paths).

A test is complete if the test meets all the
requirements of the testing criterion, and a
complete test is successful if the program
gives correct results for each input in the
test.

With these definitions, we can define pro-
gram reliability and validity. A program is
reliable if every found error is revealed by
every complete test. A program is vahd if
every error is revealed by some complete
test.

With these definitions, several important
results can be proved. Among these are:

• If a program is both reliable and valid,
then it is correct if and only if any
complete test is also successful.

• The criterion "execute every path" is
not valid; there exist programs all of
whose test sets succeed, but which pro-
duce the wrong results for some input.

While this framework is somewhat tech-
nical and is not applicable to all program-
ming, it is an important step in formalizing
this area. We now have a basis for talking

FIGURE 8. Predicates AE and An specify input-output
behavior of a program.

Computing Surveys, Vo] 10, No 2, June 1978

210 • M. V. Z e l k o w i t z

about such concepts as reliability and cor-
rectness.

Mean Time Between Failure

While useful for focusing our attention, an-
alogies with other engineering fields must
be used with care. Reliability is one area of
incomplete analogies. The concept of m e a n
t i m e b e t w e e n f a i l u r e (M T B F) does not ap-
ply directly to software although it some-
times is used as if it does.

Systems built from physical components
wear out; transistors fail; motors burn out;
soldered joints break. This is also true for
the hardware of the computer. However,
the logical components of software are du-
rable. A given program will always produce
the same answer for the same input, as long
as the hardware does not fail. When a soft-
ware module "fails," it has been presented
with an input that finally revealed an error
present from the start.

The MTBF measures the time between
revelations of errors. This, in turn, depends
on the kinds of inputs presented. A com-
prier used only for short jobs from students
may have a long MTBF; but if it is suddenly
used for other applications, its MTBF may
decrease sharply as unsuspected errors are
exercised. A large MTBF can thus be inter-
preted only as an indication of possible
reliability, not as a proof of it.

Error Days

Since formal certification of large classes of
programs is still unattainable, techniques
for estimating the validity of programs are
still being considered. Most of these tech-
niques measure the number of errors dis-
covered, which are assumed to be repre-
sentative of the total number of errors pres-
ent in the system, and hence a measure of
the reliability of the system.

Mills [MILL76] defines an er ror d a y as a
measure stating that one error remains un-
detected in a system for one day. The total
number of error days in a system is com-
puted by summing, for each error, the
length of time that error was in the system.
A high error day count may reveal many
errors (poor design) or long-lived errors
(poor development).

The assumption is made that if a pro-
gram is delivered with a low error day
count, then there is a good chance that it
will remain low during future use. However,
two major problems remain before this
measure can be widely used. First, it is
difficult to discover when a particular error
first entered a system. Second, it may be
difficult to obtain such information from
the developer of a delivered product.

Programming Techniques

Several authors have mentioned that the
number of lines of code produced by a
programmer in a given time tends to be
independent of the language used. This im-
plies that higher level languages enhance
productivity [BRoo75, HALS77]. This is
true even though assembly language pro-
grams are potentially more efficient; their
potential is seldom realized in practice.

The goals in developing early higher level
languages were to be able to express clearly
an algorithm and translate it into efficient
machine language programs. The efficiency
of the resulting code was all important. This
led to some anomalies in FORTRAN arising
from the structure of the IBM 704 for which
it was developed (for example, the three-
way branch of the arithmetic IF). ALGOL,
which was developed as a machine-inde-
pendent way of expressing algorithms, con-
tained concepts whose implementation on
conventional hardware was inefficient (e.g.,
recursion, call-by-name); this may explain
why ALGOL is not widely used.

By the late 1960s it was accepted that
the language should facilitate writing the
program and that the machine should be
designed to create an efficient run-time en-
vironment. Today there is a definite shift
toward using the language to make pro-
gramming and documentation easier and to
produce reliable and correct software.

This does not mean, however, that effi-
ciency is ignored today. Whereas PL/ I per-
mits the writing of simple programs whose
execution time is quite long, PASCAL was
designed to exclude constructs whose ma-
chine code is inefficient. Since hardware is
less expensive than programmers, reliabil-
ity has become a major factor: The pro-

Computing Surveys, Vol. 10, No 2, June 1978

Perspectives on Software Engineering

grammer's task is made easier when the
computer does more work.

Structured Programming

A major development in facilitating the
programming task is known as structured
programming, which has been erroneously
called "gotoless" programming. Fortu-
nately, the debate about "to goto or not to
goto" has mostly disappeared, and some
clear ideas have emerged. The premise of
structured programming is to use a small
set of simple control and data structures
with simple proof rules. A program then is
built by nesting these statements inside
each other. This method restricts the num-
ber of connections between program parts
and thereby improves the comprehensibil-
ity and reliability of the program.

The if-then-else, while-do, and se-
quence statements are a commonly sug-
gested set of control structures for this type
of programming; however, there is nothing
sacred about them. Knuth [KNUT74] has
argued that the goto statement is irrele-
vant to the true goals of structured pro-
gramming.

These simple control structures help pro-
grammers certify programs, even at an in-
formal level. For example, a program can
be represented as a function from its input
data to its output data. Suppose f(x) rep-
resents a segment of a program given by
the following if- then-else statement:

ifp(x) t hen g(x) else h(x).

Because functions g and h are simpler than
function f, their specifications should be
simpler. If their specifications are known,
the overall function f is defined by

f(x) = ~p(x) --~ g(x)) V {qp(x) ---> h(x)).

The programmer can express the formal
definition of f in terms of the simpler defi-
nitions of g and h.

Languages such as ALGOL, PASCAL, and
certain subsets of PL/I contribute to good
programming practices by providing these
facilities. In order to repair FORTRAN'S lack
of structure, over 50 preprocessors for
translating well-structured pseudo-FOR-
TRAN programs into true FORTRAN have
been developed [REIF76]. An if- then-else

211

has been added to the new FORTRAN-77
standard, although a general while is still
missing from the language.

System Design

A technique related to structured program-
ming is top-down design, in which a pro-
grammer first formulates a subroutine as a
single statement, which is then expanded
into one or two of the basic control struc-
tures mentioned earlier. At each level the
function is expanded in increasingly greater
detail until the resulting description be-
comes the actual source language program
in some programming language.

Using this approach, also called stepwise
refinement [WIRT71, WIRT74], the program
is hierarchically structured and is described
by successive refinements. Each refinement
is interpreted by referring to other refine-
ments of which it is a component. Concern-
ing this method, Wirth states:

I should like to stress that we should not be led to
refer that actual program conception proceeds in
such a well orgamzed, straightforward, "topdown"
manner. Later refinement steps may often show
that earher decisions are inappropriate and must
be reconsidered. But thin neat, nes ted factor~za-
tmn of a program serves admirably well to keep
the individual building blocks intellectually man-
ageabl~, to explain the program to an audience
and to oneself, to rame the level of confidence in
the program, and to conduct informal, and even
formal proofs of correctness The emerging mod-
ularity is particularly welcome if programs have
to be adjusted to changed or extended speofica-
tions. [WIRT74, p. 251]

Operating systems are often modeled as
hierarchies of abstract or virtual machines
[BRIN77]. At the lowest level of the system
is the physical hardware. Each new level
provides additional capabilities, or allowa-
ble functions on data, and hides some of
the details of a lower level. For example, if
one level accesses the paging hardware of
the computer and provides a large virtual
memory for all other processes, other ab-
stract machines at higher levels can be im-
plemented as if they had unlimited memory
since this detail is controlled by a lower
level.

The concept of a program design lan-
guage (PDL) to aid in this development

Computing Surveys, Vol I0, No 2, June 1978

212 • M. V. Zelkowitz

has been defined [CAIN75]. This type of
language contains two structures: "outer"
syntax of basic statement types, such as if-
then-else, while, and s equence for con-
necting components, and an "inner" syntax
that corresponds to the application being
designed. The inner syntax is English state-
ment oriented, and is expanded, step by
step, until it expresses the algorithm in
some programming language. Figure 9 rep-
resents an example of a PDL design.

It should be noted here that PSL/PSA
and PDL complement each other.
PSL/PSA is a specifications tool that vali-
dates correct data usage between two mod-
ules (interfaces). A system like PDL is use-
ful for describing a given module at any
level of detail. Both PSL/PSA and PDL
can contribute to success in a large project.

Even though designed from the top
down, many systems are implemented from
the bottom up. Low-level routines are first
coded with drivers to test them; then new
modules, using these low-level routines, are
added, and the system is built up.

Top-down development is another tech-
nique for implementing hierarchically
structured programs. Here the top-level
routines are written first and lower level
routines, called stubs, are written to inter-
face with these. The stubs return control
after printing a simple message and may
return some fixed sample test values. The
stub is eventually replaced by the full mod-
ule which now includes calls to other stubs.
In this manner an entire system can be
gradually developed.

If used carefully, this technique can be
valuable; however, the system's correctness
is assumed, not proved, until the last stub

max. P R O C E D U R E (list);
/* Find maximum element in a lint */
DECLARE (maxxmum, next) mteger,
DECLARE list list of integers,
maximum --- in:st element of list,
DO WHILE (more elements in list);

next -- next element of list,
maxHnum = largest of next and maxnnum;
END'

R E T U R N (maximum);
E N D max,

FIGURE 9. PDL of a program to find the largest
element in a hst (outer syntax is m upper case, inner
syntax m lower case).

has been replaced [DENN76a]. The docu-
mentation specifies the assumptions on
each stub. For example, if

fix) = i fp (x) t h e n g(x) else h(x)

is a program fragment calling stubs g and
h, then fwill be correct only if the modules
eventually replacing the stubs g and h are
correct.

Via top-down development, a user sees
the top-level interfaces in the system very
early. He can then make changes relatively
easily and soon. Another approach with the
same goal is iterative enhancement [BASI
75]. Using this technique, a subset of the
problem is first designed and implemented.
This gives the user a running system early
in the life cycle when changes are easier to
make. This process is repeated to develop
successively larger subsets until the final
product is delivered.

Brooks [BRoo75] believes that the first
version of a system is always "thrown
away," because the concrete specifications
for a system are often not defined until the
system is completed, a time when the initial
product meets those specifications rather
poorly. It is often cheaper and faster to
rebuild a system from scratch than to try
to modify an existing product to meet these
specifications. However, a developer will
often deliver such a modified system as a
"pro-release" if a deadline is near and the
purchaser is demanding results. The buyer
then suffers with this version, replete with
errors, until he throws it away or has the
product rebuilt. Iterative enhancement can
make rebuilding less chaotic since there is
a running system (not meeting all the re-
quirements) early in the development cycle.

Performance Issues

The chosen algorithms and data structures
have a much greater influence on program
performance than code optimization or the
programming language. Before choosing an
algorithm, the programmer faces these
questions:

• Can previously written software be
used?

• If a new module must be written, what
algorithms and data structures will
give an efficient solution?

Computing Surveys, Vol 10, No 2, June 1978

Perspectives on Software Engineering . 213

Programming languages usually include
standard mathematical functions such as
sine, logarithm, and square root. They give
the programmer ready access to libraries of
standard software packages. This allows
the programmer to use results of previous
work. In preparing programs for standard
libraries, analysts have included many op-
tions in a single package. The effect can be
a large cumbersome package which is inef-
ficient because only a small part of it is
applicable at any one time. This can be
avoided by installing multiple versions of
the module for each special case.

Many opportunities remain for more
packaging and use of existing software. Dif-
ficulties in achieving this include:

• Identifying which standard algorithm
to package. This is easier in mathe-
matical areas such as statistical testing,
integration, differentiation, and matrix
computations than in many non-nu-
merical areas such as business appli-
cations.

• Transporting and interfacing with
packaged software. Some progress has
been made with programs stored in
read-only memories which plug into
microprocessors, or with interface
processors on computer networks. A
major problem area lies in interfacing
software directly to other software,
since there are no conventions. Some
help is afforded by such concepts as
the "pipeline" in UNIX, which pro-
rides a general communications chan-
nel between programs [RtTC74].

Algonthm Analysis

Sometimes the program specification is
not changeable, and the analyst must find
the best possible algorithm. Sometimes,
however, the specifications can be altered
to permit a more efficient solution. In some
instances we can show that there are no
algorithms guaranteed to be efficient in all
cases; here approximate algorithms that are
efficient in most cases but need not give
exact solutions must be used.

The fast Fourier transform illustrates the
most efficient form for computing the Four-
ier transform, a technique useful in wave-

form analysis [CooL65]. This transform is
based on a finite set of points rather than
on a complex integral which is harder to
compute. Language analysis {parsing) in a
compiler illustrates how changing the spec-
ification can permit a more efficient solu-
tion. Any string of N symbols in an arbi-
trary context-free language can be parsed
in time of order O(N**3) [YOuN67]; how-
ever, a programming language need not in-
clude all features of an arbitrary context-
free language. PASCAL is an example of a
language which can be parsed by a deter-
ministic top-down parser in average time of
order O(N) [AHo72]. If we are free to set
language specifications, we can choose the
language and be rewarded with efficient
compilers.

Many practical problems, such as job
scheduling or network commodity flow, in-
volve enumeration of a combinatorially
large number of alternatives and selection
of a best solution. In these cases it may be
better to restrict the search for a subopti°
mal but good answer. We recommend the
paper by Weide [WEID77] for a discussion
of the issues and a state-of-the-art survey
of algorithm analysis.

Efhciency

In many cases the results of algorithmic
analysis are not extensive enough to help
the programmer; thus we need to offer tech-
niques which can help locate and remove
sources of inefficiency. One such tool is an
optimizing compiler which, for some lan-
guages, can yield significant improvements
[LOwR69]. The value of such tools, how-
ever, is limited [KNUT71] and may be re-
alized only for programs which are used
often enough to justify the investment in
optimization.

One of the most powerful aids is the
frequency histogram, which reveals how
often each statement of a program is exe-
cuted. It is not unusual to find that 10% of
the statements account for 80% of the exe-
cution time [KNUT71]. A programmer who
concentrates on these "bottlenecks" in his
algorithms can realize significant perform-
ance improvements at a minimum invest-
ment. This technique has been used in some
interactive operating systems, such as

Computing Surveys, Vol 10, No 2, June 1978

214 • M. V. Zelkowitz

UNIX and MULTICS, which started out
as high-level language operating systems.
Bottlenecks have been replaced by assem-
bly language routines in less than 20% of
the system.

Theory of Specifications

One area of software engineering that is
now under study is system specifications.
The objective is to state the specifications
early using a metalanguage. This places
restrictions on the design and may help
establish whether the specifications are
met.

An early example of such a specification
was the so-called "gotoless programming"
[DIJK68, KNUT74]. It is properly called
"structured programming." It restricts the
form of statements a programmer may use,
but this restriction contributes to compre-
hensibility and enhances a correctness
proof.

A second set of such rules employs the
concepts of levels of abstraction, informa-
tion hiding, and module interfacing to re-
strict access to the internal structure of
data. Parnas [PARN72] formalized these
ideas which were standard practices of ex-
pert programmers. He defines data as a
collection of logical objects, each with a set
of allowable states. Procedures can then be
written to hide the representation of these
objects inside separate modules. The user
manipulates the objects by calling the spe-
cial procedures.

Several languages that facilitate the use
of these concepts have been developed.
Among these are EUCLID [POPE77], CLU
[LISK77], and ALPHARD [WULF76]. These
languages permit programmers to define
abstract data types having the property to
encapsulate the representation of the logi-
cal objects [LISK 75]. When concurrency is
an issue, the use of abstract objects must
be controlled by synchronization (for ex-
ample, locks, signals); in this case the ab-
stract type managers are called monitors.

Another kind of specification consists of
"higher order software axioms" (HOS)
[HAMI76], which are a set of six axioms that
specify allowable interactions among proc-
esses in a real-time system. One axiom pro-
hibits a process from controlling its own

execution, thereby ruling out recursion in a
design. Another axiom states that no mod-
ule controls its own input data space and is
therefore unable to alter its input variables.
While these axioms are not complete, they
are a first step at formalizing specifications
for system design.

SUMMARY

Boehm has stated seven principles that
have helped organize the techniques dis-
cussed in this paper [BOEH76].

1) Manage using a sequential life cycle
plan. This means to follow the software
development life cycle outlined earlier. It
allows for feedback which updates previous
stages as the consequences of previous de-
cisions become unknown. It encourages
milestones to measure progress.

2) Perform continuous validation. Cer-
tify each new refinement of a module. Use
walkthroughs and code reading. Display
the hierarchical structure of the system
clearly in all documentation.

3) Maintain disciplined product con-
trol. All output of a project--design docu-
ments, source code, user documentation,
and so forth--should be formally approved.
Changes to documents and program librar-
ies must be strictly monitored and audited.
Code reading, project reporting forms, li-
brarians, a development library, and a proj-
ect notebook all contribute to this goal.

4) Use enhanced top-down structured
programming. PL/I and PASCAL have
good control and data structures. Pre-
processors exist which augment FORTRAN
for these structures. Description techniques
such as stepwise refinement, nested data
abstractions, and data flow networks should
be used.

5) Maintain clear accountability. Use
milestones to measure progress, and a proj-
ect notebook to monitor each individual's
efforts.

6) Use better and fewer people. The
chief programmer team, in which each in-
dividual is skilled and accountable for his
actions, and good results are rewarded, aids
in this effort.

7) Maintain commitment to improve
process. Settle only for the best; strive for
improvement. Be open to new develop-

Computing Surveys, Vol 1O, No 2, June 1978

Perspect ives on So f tware Eng ineer ing ° 215

ments in software engineering, but do not
sacrifice reliability for modifiability while
pursuing them.

Progress has been made in understanding
how large-scale software systems are built,
yet more needs to be done. Management
aids must be improved and project control
techniques developed. The role of software
management is coming more to resemble
that of engineering management in other
disciplines. We can no longer afford costly
mistakes when systems are so large and we
depend so much on them. Most impor-
tantly, we must be patient; we need to gain
experience on which future theories can
rely.

ACKNOWLEDGMENTS

The author Is indebted to Peter Denning for his de-
tailed review and to the referees for their valuable
comments on this paper. This work was partially sup-
ported by grant number DCR 74-11520-AO1 from the
National Scmnce Foundatmn to the National Bureau
of Standards.

[AHo72]

[ANSI66]

[ANSI76]

[BAKE72]

[BAsI78]

[BAsI751

[BOEH75]

[BOEH77]

[BRIN77]

[BRoo751

REFERENCES

AHO, A.; AND ULLMAN, J. Theory ofpars-
rag, translatmn, and compdmg, Pren-
tice Hall, Inc., Englewood Cliffs, N J.,
1972.
American Standard FORTRAN, Amer-
ican Natl. Standards Inst., x3.9-1966,
March, 1966.
Amerwan Standard PL/1, American
Natl. Standards Inst., x.53-1976, Aug.,
1976.
BAKER, F. T. "Chief programmer team
management of production program-
mmg," IBM Syst. J. 11, 1 (1972), 56-73.
BASILI, V.; AND ZELKOWITZ, M. "Analyz-
ing medium scale software develop-
ment," Thwd Int. Conf. Software Eng,.
neermg, 1978.
BASILI, V.; AND TURNER, A. J. "Iterative
enhancement: a practical technique for
software development," IEEE Trans.
Softw. Eng. 1, 4 (Dec. 1975), 390-396.
BOEHM, B.; MCCLEAN, R.; AND URFRIG,
D. "Some experience with automated
aids to the design of large scale reliable
software," Int. Conf. on Rehable Soft-
ware, 1975, ACM, New York, pp.
105-113.
BOEHM, B. "Seven basic principles of
software engineering," in Infotech state
of the art report on software engineering
techniques, 1977, Infotech International
Ltd., Mmdenhead, UK, 1976.
BRINCH, HANSEN P. Architectures of
concurrent programs, Prentme Hall,
Inc., Engiewood Cliffs, N. J., 1977.
BROOKS, F. P. The mythwal man month,

[CAIN751

[CoNw78]

[CoNw73]

[CooL65]

[DAvI77]

[DENN76a]

[DENN76b l

[DIJK68]

lDIJK76]

lDoLO761

[ENR61]

[ENR64]

[ENR77]

[FIFE771

[GALL65]

[GERH761

[GooD75]

[HALS771

[HAMI76]

[HOAR69]

Addison-Wesley Publ Co., Reading,
Mass., 1975.
CAINE, S. H., AND GORDON, E. K.
"PDL--a tool for software design," m
Proc. 1975 AFIPS Natl. Computer Conf.,
Vol. 44, AFIPS Press, Montvale, N. J.,
pp. 271-276.
CONWAY, R. A pftmer on dtsctphned
programming, Winthrop Publishers,
Cambridge, Mass., 1978.
CONWAY, R.; AND WILCOX, W. "Design
and implementation of a diagnostic com-
piler for PL/1," Commun. ACM 16, 3
(March 1973), 169-179.
COOLEY, J. W.; AND TUKEY, J. W. "An
aignnthra for the machine calculation of
complex Fourier series," Math. Comput.
19, 90 (1965), 299-301.
DAVIS, C. G.; AND VICK, C. R. "The soft-
ware development system," IEEE
Trans. Soflw. Eng. 3, 1 (Jan., 1977),
69-84.
DENNING, P. J. "A hard look at struc-
tured programming," in lnfotech state of
the art report on structured program-
mmg, 1976, Infotech International Ltd.,
Maidenhead, UK, pp. 183-202.
DENNING, P. J. "Fault tolerant operating
systems," Comput. Surv. 8, 4 (Dec. 1976),
359-389.
DIJKSTRA, E. "GOTO statement consid-
ered harmful," Commun. ACM 11, 3
(March 1968), 147-148.
DIJKSTRA, E. A d~sctpline of program-
ming, Prentice Hall, Inc., Englewood
Cliffs, N. J., 1976.
DOLOTTA, T. A.; AND MASHEY, J. R. "An
introduction to the programmer's work-
bench," in Second Int. Conf Software
Engineering, 1976, pp. 164-168.
"Everything about the Narrows Bridge
is big, bigger, or biggest," Eng. News
Record 166, June 29, 1961, 24-28.
"Narrows Bridge opens to traffic," Eng.
News Record 173, Nov. 19, 1964, 33.
"Alaskan pipe cost probe hits snag,"
Eng. News Record 198, April 7, 1977, 14.
FIFE, D. Computer software manage-
ment: a primer for prolect management
and qualtty control, Natl. Bureau of
Standards, Inst. Computer Sciences and
Technology, Special Publications, April
1977.
GALLAGHER, P. F. Project est~matmg by
engineering methods, Hayden Book Co.,
New York, 1965.
GERHART, S., AND YELOWITZ, L. "Obser-
vations of fallibility in applications of
modern programming methodologies,"
IEEE Trans. Softw. Eng. 2, 3 (Sept.
1976), 195-207.
GOODENOUGH, J. B.; AND GERHART, S.
"Toward a theory of test data selection,"
IEEE Trans. Softw. Eng. 1, 2 (June
1975), 156-173.
HALSTEAD, M. Elements of software sci-
ence, Elsevier North Holland, Inc., New
York, 1977.
HAMILTON, M., AND ZELDIN, S. "H~gher
order software--a methodology for de-
fimng software," IEEE Trans. Softw.
Eng. 2, 1 (March 1976), 9-32.
HOARE, C. A. R. "An axiomatic basis for
computer programming," Commun.

Computing Surveys, Vol. 10, No. 2, June 1978

216 "

[HUAN75]

[JEFF77]

[KING69]

[KNUT71]

[KNUT74]

[LISK75]

[LISK77]

[LOWR69]

[MILL76]

[PARN72]

[PARN75]

[POPE77]

[PUTN77]

M. V. Z e l k o w i t z

ACM 12, 10 (Oct. 1969), 576-580, 583.
HUANG, J. C. "An approach to program
testing," Comput. Surv. 7, 3 (Sept. 1975),
113-128.
JEFFERY, S., AND LINDEN, T "Software
engineering is engineering," in IEEE
Computer Science and Engineering
Curricula Workshop, 1977, IEEE, New
York, pp. 112-115.
KING, J. C. "A program verifier," PhD
Dissertation, Computer Scmnce Dept.,
Carnegie-Mellon Univ. Pittsburgh, Pa.,
1969.
KNUTH, D. "An empirical study of FOR-
TRAN programs." Softw. Pract Exper.
1, 2 (1971), 105-133.
KNUTH, D. "Structured programming
with statements," Comput Surv. 6, 4
(Dec. 1974), 261-301.
LISKOV, B.; AND ZILLES, S. "Specification
techniques for data abstractions," IEEE
Trans. Softw Eng. 1, 1 (1975}, 9-19.
LISKOV, B.; SNYDER, A, ATKINSON, R.;
AND SCHAFFERT, C. "Abstraction mech-
amsms in CLU," Commun. ACM 2 0 , 8
(Aug. 1977), 564-576.
LOWRY, E. S.; AND MEDLOCK.C W. "Ob-
ject code optimization," Commun. ACM
12, 1 (Jan. 1969), 13-22.
MILLS, H. D. "Software development,"
IEEE Trans Softw. Eng. 2, 4 (1976),
265-273
PARNAS, D. L. "On the criteria for de-
composing systems into modules," Com*
mun. ACM 15, 12 (Dec. 1972),
1053-1058.
PARNAS, D. L. "The influence of software
structure on reliability," m Int. Conf.
Reliable Software, 1975, pp. 358-362,
(ACM SIGPLAN Notices 10, 6 June
1975).
POPEK, G J.; HORNING, J J.; LAMPSON,
B. W.; MITCHELL, J. G.; AND LONDON, R.
L "Notes on the design of EUCLID," in
Proc ACM Conf Language Destgn for
Rehable Software, ACM, New York,
1977, pp. 11-18.
PUTNAM, L.; AND WOLVERTON, a. Quan-
t~tatwe management, software cost es-

RECEIVED MARCH 14, 1977; FINAL REVISION ACCEPTED

[RAMA75]

[REIF76]

[RITC74]

[TEIC77]

[WALS77]

[WEID77]

[WEIN71]

[WIRT71]

[WIRT74]

[WoLv74]

[WULF76]

[YOuN67]

[ZELK75]

MARCH 7, 1978

tlmatmg, (tutorial), IEEE Computer So-
ciety, Nov. 1977, IEEE, New York..
RAMAMOORTHY, C. V., AND HO, S. F
"Testing large software with automated
software evaluation systems," IEEE
Trans. Softw Eng. 1, 1 (1975), 46-58.
REIFER, D. J. "The structured FOR-
TRAN dilemma," SIGPLAN Notwes
11, 2 (1976), 30-32.
RITCHIE, D. M.; AND THOMPSON, K.
"The UNIX time-sharing system," Com-
mun ACM 17, 7 (July 1974), 365-375
TEICHROEW. D.; AND HERSHEY, E. A.
"PSL/PSA. a computer aided technique
for structured documentation and anal-
ysis of information processing systems,"
IEEE Trans Softw Eng. 3, 1 (1977),
41-48.
WALSTON, C. E, AND FELIX, C. P. "A
method of programming measurements
and estimation," IBM Syst. J. 16, 1
(1977), 54-73.
WEIDE, B. "A survey of analysis tech-
niques for discrete algorithms," Comput.
Surv. 9, 4 (Dec. 1977), 291-313
WEINBERG, G. M. The psychology of
computer programming, Van Nostrand
Reinhold, New York, 1971.
WIRTH, N. "Program development by
stepwise refinement," Commun. ACM
14, 4 (April 1971), 221-227.
WIRTH, N. "On the composition of well-
structured programs," Comput. Surv 6,
4 (Dec 1974), 247-259
WOLVERTON, R W. "The cost of devel-
oping large scale software," IEEE
Trans. Comput. 23, 6 (1974}, 615-636.
WULF. W.; LONDON, R , SHAW. M. "An
introduction to the construction and ver-
ification of ALPHARD programs,"
IEEE Trans Softw. Eng. 2, 4 (1976},
253-264.
YOUNGER, D. "Recognition and parsing
of context-free languages in time n**3,"
Inf Control 10, 2 {1967), 189-208.
ZELKOWITZ, M. V. "Third generation
compiler design," m A CM Natl. Comput
Conf., 1975, ACM, New York, pp.
253-258.

Computing Surveys, Vol 10, No 2, June 1978

