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INTRODUCTION 

Software development usually proceeds in 
one of two ways: either the programmer 
works alone in designing, implementing, 
and testing a software system, or he is a 
member of a group of from three up to 
several hundred, working together on a 
large software system. Although software 
engineering embraces both approaches, 
here we are interested mainly in large-scale 
program development. 

When the Verrazano Narrows Bridge in 
New York City was started in 1959, officials 
estimated that it would cost $325 million 
and be completed by 1965. It is the largest 
suspension bridge ever built, yet it was com- 
pleted in November 1964, on target and 
within budget [ENR61, ENR64]. No simi- 
lar pattern has been observed when we 
build software systems larger than those 
which had been built previously. 

Software is often delivered late. It is fre- 
quently unreliable and usually expensive to 

maintain. The IBM OS project, which in- 
volved over 5,000 man-years of effort, was 
years late [BRoo75]. Why is bridge engi- 
neering so exact while software engineering 
flounders so? 

Part  of the answer lies in,the greater ease 
with which a civil engineer can see the 
added complexity of a larger bridge than a 
software engineer the complexity of a larger 
program. Part  of today's "software prob- 
lem" stems from our attempt to extrapolate 
from personal experiences with smaller pro- 
grams to large systems programming proj- 
ects. 

We begin here by outlining the general 
approach used in developing program prod- 
ucts, emphasizing aspects which are still 
poorly understood. Later, we enumerate 
the techniques which have been used to 
solve these problems. We do not attempt to 
cover all of the relevant topics in depth, but 
we give many references for further read- 
ing. 

Software engineers are currently study- 
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ing the causes of these problems and the 
mechanisms of software development. 
They seek both constraints on program- 
ming which will render software less expen- 
sive and more reliable and also the theoret- 
ical foundations upon which programs are 
built. Software engineering is not the same 
as programming, although programming is 
an important component. It is not the study 
of compilers and operating systems, al- 
though compiler writers and operating sys- 
tem implementors use similar techniques. 
It is not electrical engineering, although 
electronics does provide the basis for imple- 
menting the computer [JEFF77]. 

Software engineering is interdisciplinary. 
It uses mathematics to analyze and certify 
algorithms, engineering to estimate costs 
and define tradeoffs, and management sci- 
ence to define requirements, assess risks, 
oversee personnel, and monitor progress. 

1. STAGES OF SOFTWARE DEVELOPMENT 

The complexity of a large software system 
surpasses the comprehension of any one 
individual. To better control the develop- 
ment of a project, software managers have 
identified six separate stages through which 
software projects pass; these stages are col- 
lectively called the software development 
life cycle: 

* Requirements analysis; 
a Specification; 
e Design; 
* Coding; 
* Testing; 
* Operation and maintenance. 

Figure 1, a pie chart, shows the approxi- 
mate amount of time each stage takes. The 
stages are discussed in the following sub- 
sections. 

Requirements Analysis 

This first stage, curiously absent from many 
projects, defines the requirements for an 
acceptable solution to the problem. The 
statement "Write a COBOL program of not 
more than 50,000 words to produce payroll 
checks" is not a requirement; it is the par- 
tial specification of a computer solution to 
the problem. The computer is merely a tool 
for solving the problem. The requirements 
analysis focuses on the interface between 

INTEGRATION 

FIGURE 1. E f f o r t  r e q u i r e d  o n  v a r i o u s  d e v e l o p m e n t  
a c t i v i h e s  ( e x c l u d i n g  m a i n t e n a n c e )  
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the tool and the people who need to use it. 
For example, a company may consider sev- 
eral methods of paying its employees: 1) 
pay employees in cash; 2) use a computer 
to print payroll checks; 3) produce payroll 
checks manually; or 4) deposit payroll di- 
rectly into employees' bank accounts. 

Other aspects, such as processing time, 
costs, error probability, and chance of fraud 
or theft, must be considered among the 
basic requirements before an appropriate 
solution may be chosen. A requirements 
analysis can aid in understanding both the 
problem and the tradeoffs among conflict- 
ing constraints, thereby contributing to the 
best solution. 

Hard requirements and the optional fea- 
tures must be distinguished. Are there time 
or space limitations? What facilities of the 
system are likely to change in the future? 
What facilities will be needed to maintain 
different versions of the system at different 
locations? 

The resources needed to implement the 
system must be determined. How much 
money is available for the project? How 
much is actually needed? How many com- 
puters or computer services are affordable? 
What personnel are available? Can existing 
software be used? After the first questions 
are answered, project schedules must be 
planned. How will progress be controlled 
and monitored? What has been learned 
from previous efforts? What checkpoints 
will be inserted to measure this progress? 
Once all these questions have been an- 
swered, specification of a computer solution 
to the problem may begin. 

Specification 

While requirement analysis seeks to deter- 
mine whether to use a computer, specifi- 
cation (also called definition [FIFE77]) 
seeks to define precisely wha~ the computer 
is to do. What are the inputs and outputs? 
In the payroll example: Are employee rec- 
ords in a disk file? On tape? What is the 
format for each record in the file? What is 
the format for the output? Are checks to be 
printed? Is another tape to be written con- 
taining information for printing the checks 
offline? Will printed reports accompany the 

checks? What algorithms will be needed for 
computing deductions such as tax, unem- 
ployment and health insurance, or pension 
payments? 

Since commercial systems process con- 
siderable amounts of data, the database is 
a central concern. What files are needed? 
How will they be formatted, accessed, up- 
dated, and deleted? 

When the new system supersedes an 
older process (for example, when an auto- 
matic payroll system replaces a manual sys- 
tem), the conversion of the existing data- 
base to the new format must be part of the 
design. Conversion may require a special 
program which is discarded after its first 
and only use. Since the company may be 
using the older system in its day-to-day 
operation, bringing the new system online 
presents a problem. Can the old and the 
new systems run side by side for awhile? 

The answers to these questions are set 
forth in the functional specification, a doc- 
ument describing the proposed computer 
solution. This document is important 
throughout the project. By defining the 
project, the specification gives both the 
purchaser and the developer a concrete de- 
scription. The more precise the specifica- 
tions are, the less likely will be errors, con- 
fusion, or recriminations later. The specifi- 
cations enable test data to be developed 
early; this means that the performance of 
the system can be tested objectively, since 
the test data will not be influenced by im- 
plementation. Because it describes the 
scope of the solution, this document can be 
used for initial estimates of time, personnel, 
and other resources needed for the project. 

These specifications define only what the 
system is to do, but not how to do it. De- 
tailed algorithms for implementation are 
premature and may unduly constrain the 
designers. 

Design 

In the design stage, the algorithms called 
for in the specifications are developed, and 
the overall structure of the computer sys- 
tem takes shape. The system must be di- 
vided into small parts, each of which is the 
responsibility of an individual or a small 
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team. Each such module thus defined must 
have its constraints: its function, size, and 
speed. 

As submodules are specified, they are 
represented in a tree diagram showing the 
nesting of the system's components. Figure 
2 illustrates this for a typical compiler. This 
illustration, sometimes called a baseline 
diagram, is not by itself an adequate spec- 
ification of the system. 

Because the solution may not be known 
when the design stage starts, decomposition 
into small modules may be quite difficult. 
For older applications {such as compiler 
writing) this process may become standard- 
ized, but for new ones {such as defense 
systems or spacecraft control) it may be 
quite difficult. 

A common problem is that  the buyer of 
a system often does not know exactly what 
he wants, especially in state-of-the-art 
areas such as defense systems. As he sees 
the project evolve, the buyer often changes 
the specifications. If this occurs too often, 
the project may flounder. We discuss this 
problem later. 

Coding 
Coding is usually the easiest stage. High- 
level languages and structured program- 
ming simplify the task. In one study, 
Boehm [BOEH75] found that 64% of all 

DRIVER 

I I 

J PARSER J I CODE GENERATOR 

I 

I I--°. I SCANNER TABLE PROCESS ROUTINES 
i 

READ J PROCESS 

FIGURE 2. Sample baseline diagram for a compiler. 

errors occurred in design, but only 36% in 
coding. Hamilton and Zeldin [HAMI76] re- 
port that in the NASA Apollo project about 
73% of all errors were design errors. We 
have mastered coding better than any other 
stage of software development. 

Testing 

The testing stage may require up to half of 
the total effort. Inadequately planned test- 
ing often results in woefully late deliveries. 

During testing the system is presented 
with data representative of that for the 
finished system; thus test data cannot be 
chosen at random. The test plan should, in 
fact, be designed early and most of the test 
data should be specified during the design 
stage of the project. 

Testing is divided into three distinct op- 
erations: 

1) Module testing subjects each module 
to the test data supplied by the pro- 
grammer. A test driver simulates the 
software environment of the module 
by containing dummy routines to take 
the place of the actual subroutines 
that the tested module calls. Module 
testing is sometimes called unit test- 
ing. A module that passes these tests 
is released for integration testing. 

2) Integration testing tests groups of 
components together. Eventually, this 
procedure produces a completely 
tested system. Integration testing fre- 
quently reveals errors missed in mod- 
ule tests. Correcting them may ac- 
count for about a quarter of the total 
effort. 

3) Systems testing involves the test of 
the completed system by an outside 
group. The independence of this 
group is important. 

The buyer may also insist on his own 
systems test, or acceptance test, before for- 
mally accepting the product. Comparison 
of the performance of several systems (such 
as those of a given software product already 
available from several sources) is called 
benchmark testing. 

During testing, many criteria are used to 
determine correct program execution. 
Among other important criteria, the pro- 
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gram is considered correct if: 

1) every statement has been executed at 
least once by the test data; 

2) every path through the program has 
been executed at least once by the test 
data; and 

3) for each specification of the program, 
test data demonstrate that the pro- 
gram performs the particular specifi- 
cation correctly. 

These three different criteria show that 
there is no single acceptable criterion defin- 
ing a "well-tested" program. Goodenough 
and Gerhart [GooD76] proposed a set of 
consistent definitions for "testing" and 
showed that some of these definitions of 
testing are, in theory, insufficient. We re- 
turn to this subject later. For a survey of 
good testing techniques, see [HuAN75]. 

Closely related to testing are verification 
and validation (V/V). A system is validated 
when testing shows that the system per- 
forms according to its specifications. A sys- 
tem is verified when it has been proved to 
meet its specifications. Current technology 
is inadequate for achieving both these ob- 
jectives. A validated system may misbe- 
have for cases not included in the test data. 
A verified system is correct relative only to 
the initial specifications and assumptions 
about the operating environment; formal 
proofs tend to be lengthy, making them 
subject to error or incredulity. Certification 
sometimes refers to the overall process of 
creating a correct program by validation 
and verification. 

In certifying a program, three terms must 
be distinguished. A failure in a system is an 
event which marks a violation of the sys- 
tem's specifications. An error is an item of 
information which, when processed by the 
normal algorithms of the system, produces 
a failure. Since error recovery may be built 
into the program (for example, ON units in 
PL/I),  not every error will produce a failure. 
A fault is a mechanical or algorithmic de- 
fect which generates an error (for example, 
a programming "bug") [DENN76a]. 

Reliability is a concept which must not 
be confused with correctness. A correct pro- 
gram is one that has been proved to meet 

its specifications. In contrast, a reliable 
program need not be correct, but gives ac- 
ceptable answers even if the data or envi- 
ronment do not meet the assumptions made 
about them. We would like a system to be 
highly robust, that  is, to accept a large class 
of input data and to process it correctly 
under adverse conditions. Parnas [PARN75] 
describes a correct system as one that is 
free from faults and has no errors in its 
internal data. A program is reliable if fail- 
ures do not seriously impair its satisfactory 
operation. 

Operating systems with "fail-soft" pro- 
cedures illustrate the difference between 
reliability and correctness. A detected error 
causes the system to shut down without 
losing information, possibly restarting after 
error recovery. Such a system may not be 
correct because it is subject to errors, but 
it is reliable because of its consistent oper- 
ation. A real-time program may be correct 
as long as a sensor reports correctly, but it 
may be unreliable if bad sensor readings 
have not been considered. 

Operation and Maintenance 

Figure 1 shows the disposition of software 
costs in developing a new project. But this 
can be the wrong chart! The activities noted 
in Figure 1 are only 25% to 33% of the effort 
required during the life of the system. Fig- 
ure 3 illustrates that maintenance costs ul- 
timately dwarf development costs. 

No computer system is immutable. Since 
a buyer seldom knows what he wants, he 
seldom is satisfied. Probably, he will re- 
quest changes in the delivered system. Er- 
rors missed in testing will later be discov- 
ered. Different installations will need spe- 
cial modifications for local conditions. The 
management of multiple copies of a system 
is another difficult problem that must be 
handled early in development. Once the 
first line of code is written, the structure of 
the resulting maintenance operation may 
already be fixed, so it is best to plan for it 
then. 

The division of effort indicated in Figure 
3 greatly affects system development. Be- 
cause of hidden maintenance costs, tech- 
niques that  rush development and provide 
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INTEGRATION TESI 7% MODULE TEST 8 ~- 
CODE 7 % 

DESIGN 5 ~ ~  
SPECIFICATIONS 3 / 
REQUIREMENTS 3 % ~  

FIGURE 3. T rue  effort on m a n y  large-scale software 
sys tems .  

for very early initial implementation may 
be trading early execution for a much more 
extensive maintenance operation. 

The maintenance problem is sometimes 
referred to as the "parts number explosion." 
For example, a certain system contains 
components A, B, and C. Installation I finds 
and reports an error. The developer fixes 
the error and sends a corrected module A' 
to all installations using the system. 

Installations II and III ignore the replace- 
ment and continue with the original system. 
Installations I and II discover another error 
in module A. The developer must now de- 
termine whether both of these errors are 
the same, since different versions of module 
A are involved. The correction of this error 
involves correction of both A' (for I) and A 
(for II) yielding A" and A " .  There are now 
three versions of the system. 

To avoid this growth, systems often re- 
ceive updates, called releases, at fLxed in- 
tervals. A useful tool for dealing with myr- 
iad maintenance problems is a "systems 
database" started during the specifications 
stage. This database records the character- 
istics of the different installations. It in- 
cludes the procedures for reporting, testing, 
and repairing errors before distributing the 
corrections. 

Themes of Software Engineering 

It should be clear that each software devel- 
opment stage may influence earlier stages. 
The writing of specifications gives feedback 
for evaluating resource requirements; the 

design often reveals flaws in these specifi- 
cations; coding, testing, and operation re- 
veal problems in design. The goals of soft- 
ware engineering are thus to: 

• Use techniques that  manage system 
complexity. 

• Increase system reliability and correct- 
ness. 

• Develop techniques to predict software 
costs more accurately. 

In the following sections, we discuss ap- 
proaches to some of these problems. The 
list of techniques is divided into manage- 
ment and programmer issues. Management 
issues concern the effective organization of 
personnel on a project. Programmer issues 
concern the techniques used by individual 
programmers to improve their perform- 
ance. 

2. MANAGEMENTISSUES 

A manager controls two major resources: 
personnel and computer equipment. This 
section surveys techniques for optimizing 
the use of these resources. 

Size and Cost Control 

A project may fail when management is not 
aware of developing problems; a year's de- 
lay comes "one day at a time" [BRoO75]. 
Faced with catastrophic failure (for exam- 
ple, needed hardware is delayed six 
months), a resourceful manager can usually 
find alternatives. However, it is easy to 
ignore day-to-day problems (such as sick 
employees or many errors during testing). 

Most problems occur at the interfaces of 
modules written by different programmers. 
Since the number of such interfaces is on 
the order of the square of the number of 
individuals involved, the problem becomes 
unwieldy when the number of persons in a 
development group grows to four or more. 

As an example of the communications 
problem, assume that  a single programmer 
is capable of writing a 5,000-line program in 
a year, and that  a programming system 
requires about 50,000 lines of code and is to 
be completed in two years. Five program- 
mers would seem to be sufficient (see Fig- 
ure 4a). 
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However, the five programmers must 
communicate with one another. Such com- 
munication takes time and also causes some 
loss in productivity since finding misunder- 
stood aspects will require additional testing. 
For this simple analysis, assume that each 
communication path "costs" a programmer 
250 lines of code per year. Each of the five 
programmers, therefore, can produce only 
4,000 lines per year and only 40,000 lines 
are completed within two years (see Figure 
4b). 

This means that eight programmers pro- 
ducing 3,250 lines per year are actually 
needed in order to produce the required 
50,000. A manager is required for direction 
of this large effort. Therefore, in summary, 
eight programmers and a manager, each 
producing an average of 3,000 lines per year, 
are actually needed (see Figure 4c). 

As we shall see, simply counting lines of 
code is not a good way to estimate produc- 
tivity. The figures in this example are only 
given to illustrate a point, but they are 
representative of the problem. There are 
also techniques designed to limit this com- 
munications "exolosion" and to increase 
programmer productivity. 

ProJect Personnel 

Software can usually be divided into three 
categories: 1) control programs (such as 
operating systems), 2) systems programs 
(such as compilers), and 3) applications 
programs (such as file management sys- 
tems). A single programmer working on a 
control program can produce about 600 
lines of code per year, whereas he can pro- 
duce about 2,000 lines if working on a sys- 
tems program and about 6,000 if working 
on an applications program [WoLv74]. The 
type of task certainly affects the productiv- 
ity that can be expected from a given pro- 

A 

FIGURE 4(a) Single projects.  5,000 hnes  per  year  = 
50,000 lines m two years  (no c o m m u m c a t l o n  be- 
tween p rogrammers )  

B 

FIGURE 4(b). F ive -member  group'  4,000 hnes  per 
year  = 40,000 lines m two years  (ten communica t ion  
pairs}. 

C () 

\ () 

A 

} 
f ~  

/ \  
FIGURE 4(C). N i n e - m e m b e r  team: 3,000 lines per year  

= 50,000 lines in two years  (36 communica t ion  
pairs). 

grammer. However, as the previous exam- 
ple demonstrates, the organization of per- 
sonnel also affects performance. For exam- 
ple, with the approach of deadlines, docu- 
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mentation is often given lower priority. 
However, since 70% of the total system cost 
may occur during the maintenance state 
(where the documentation is heavily used), 
this may be a false economy of effort. 

Use of a librarian is one way to avoid this 
problem. A librarian provides the interface 
between the programmer and the com- 
puter. Programs are coded and given to the 
librarian for insertion into the online proj- 
ect library. The actual debugging of the 
module is carried out by the programmer, 
but changes to the official module in the 
library are made by the librarian. The use 
of a library is further enhanced when an 
online data management system is used. 

The use of a librarian has another bene- 
ficial effect. All changes in modules in the 
project library are handled by one individ- 
ual and are easy to monitor; they are often 
reviewed by the project manager before 
insertion. This prevents "midnight 
patches" from being quickly incorporated 
into a system and forces the programmer to 
think carefully about each change. It also 
gives the manager disciplined product con- 
trol and helps with audit trails. 

On larger projects, a technical writer may 
perform much of the documentation, thus 
freeing programmers for the tasks for which 
they are most skilled. 

The culmination of this trend is the c h i e f  
p r o g r a m m e r  t e a m  concept developed by 
IBM [BAKE72]. The concept recognizes 
that programmers have different levels of 
competence; therefore, the most competent 
should do the major work, while others 
function in supporting roles. As the earlier 
example shows, interfacing problems 
greatly reduce programmer productivity. 
The chief programmer team is one way of 
limiting this complexity. 

The chief programmer, an excellent pro- 
grammer and a creative and well-disci- 
plined individual, is the head of the team. 
He may be five or more times more pro- 
ductive than the lowest member of the 
team [BOEH77]. He functions as the tech- 
nical manager of the project, designs the 
system, and writes the top-level interfaces 
for all major modules. 

If a project is large, a team may also have 
an administrative manager to handle such 

responsibilities as budgeting time, vaca- 
tions, office space, and other resources, and 
reporting to upper-level management. The 
administrative manager often administers 
several programming teams. 

The backup programmer works with the 
chief programmer and fills in details as- 
signed by the chief programmer. Should 
the chief programmer leave the project, the 
backup programmer would take over. This 
means that he also must be an excellent 
programmer. The backup programmer also 
fulfills an important role by providing the 
chief programmer with a peer with whom 
he can discuss the design. 

There are also two or three junior pro- 
grammers assigned to the team to write the 
low-level modules defined by the chief pro- 
grammer. The term "junior" in this context 
means "less experienced," not "less capa- 
ble." As Boehm states, the best results oc- 
cur with fewer and better people. 

Using the example illustrated by Figure 
4, a chief programmer team of five individ- 
uals has only seven communications paths, 
and the chief programmer, being that rare 
individual, can produce more than his 
quota of 5,000 lines (see Figure 5). Thus 
productivity per programmer could be 
greater than 5,000 lines per year, instead of 
the previous figure of only 4,000. 

The team has a librarian to manage the 
project l ibrary--both the online module li- 
brary and the offiine project documentation 
(also called the project notebook). The 
project notebook contains, among other 
things, records of compilations and test 
runs of all modules. It is important to the 
team structure, since all development is 
now accountable and open for inspection, 
and code is no longer the "private property" 
of any individual programmer. 

Programmers have traditionally been re- 
luctant to exhibit their products until com- 
pletion, since discovered errors have tradi- 
tionally been viewed as a personal failure. 
The absurdity of this approach is clear 
enough. If the ego element is removed from 
programming, programmers may openly 
ask others for advice when they need it, 
instead of trying to solve all problems them- 
selves [WEIN71]. 

The team may include other supporting 
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FIGURE 5. Fewer  communica t ions  pa t h s  in a chief  
p rog rammer  t eam.  

personnel such as secretaries and technical 
writers. Experience shows that ten is the 
upper bound to team size. 

This structure, however, will not solve all 
problems in development. With a smaller 
number of individuals involved, compe- 
tence is crucial. It is not possible to "work 
around" a nonproductive individual as one 
might do in a large project. There are also 
extremely large projects where a group of 
ten is simply too small to tackle develop- 
ment. Larger teams are not efficient. 

A man-month, or the amount of work 
performed by one individual in one month, 
is a deceptive measure for estimating proj- 
ect productivity. A project requiring four 
programmers for a year cannot be com- 
pleted by 48 programmers in one month. 
The example of the 50,000 line system 
needed in two years shows some of the 
problems inherent in trying to exchange 
programmers for time. "Adding manpower 
to a late software project makes it later" 
[BROO75]. New personnel divert existing 
personnel needed to train them; they re- 
quire more supervision; they complicate 
communication and interfere with th~ de- 
sign since they are unfamiliar with the proj- 
ect structure. 

However, man-months do serve a pur- 
pose as a useful measure of project costs. 
By adding more data, such as the rate of 
using man-months, accurate cost estima- 
tion techniques can be utilized. These are 
explained in the following subsection. 

Estimation Techniques 

One of the most important aspects of engi- 
neering is estimating the resources needed 

to complete a project. As previously men- 
tioned, the Verrazano Narrows Bridge in 
New York City was completed at the pro- 
jected time and within the estimated 
budget. How was such accuracy achieved? 

Most engineering disciplines have highly 
developed methods of estimating resource 
needs. One such technique is the following 
[GALL65]: 

1) Develop an outline of the require- 
ments from the Request for Quotation 
(RFQ); 

2) Gather similar information, for ex- 
ample, data from similar projects; 

3) Select the basic relevant data; 
4) Develop estimates; 
5) Make the final evaluation. 

Although this approach has been advo- 
cated for software development, software 
projects have difficulty passing Step i 
[WOLV74]. Engineers have been building 
bridges for 6,000 years but  software systems 
for only 30 years. Prior experience to de- 
velop the true requirements may not be 
available. Moreover, with very little back- 
ground to build on, the developer has little 
knowledge of similar systems to use in eval- 
uation (Step 2). 

In developing the estimates (Step 4), the 
following tasks must be undertaken: 

4a) Compare the project to similar pre- 
vious projects. 

4b) Divide the project into units and 
compare each unit with similar units; 

4c) Schedule work and estimate re- 
sources by the month. 

4d) Develop standards that can be ap- 
plied to work. 

Note that for Step 4a), the lack of pre- 
vious experience presents a continuing 
problem. Also, for Step 4d), an adequate 
set of standards does not yet exist. 

Experience is the key to accurate esti- 
mation. Even civil engineering projects may 
fail badly when established techniques are 
not followed. Although the Verrazano Nar- 
rows Bridge was the world's largest suspen- 
sion bridge, its engineers had much experi- 
ence with other similar structures. On the 
other hand, the Alaskan oil pipeline was 
estimated to cost $900 million, yet by mid- 
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1977 the cost had risen past $9 billion 
[ENR77]. In this case, the design was al- 
tered continuously as the federal govern- 
ment imposed new environmental stan- 
dards (that is, changing specifications), and 
new technologies were needed to move 
large quantities of oil in a cold weather 
environment. Previous experience was only 
marginally helpful. 

Results from computer hardware relia- 
bility theory are now starting to play a role 
in software estimation [PUTN77]. The cu- 
mulative expenditures over time for large- 
scale projects have been found to agree 
closely with the following equations: 

E = K ( 1 - e  -'~t2) 

where E is the total amount spent on the 
project up to time t, K is the total cost of 
the project, and a is a measure of the max- 
imum expenditures for any one time period. 
This relationship is usually expressed in its 
differential form, called a Rayleigh curve: 

E '  = 2 K a t e  -at 2 

where E'  is the rate of expenditures, or the 
amount spent on the project during year 
number t. Since 70% of the cost of a project 
occurs during the maintenance stage, it is 
not surprising that  the maximum expendi- 
tures will occur just before the product is 
released, a time when it is usually assumed 
that the effort is winding down before ter- 
mination (see Figure 6). 

The Rayleigh curve has two parameters, 
K and a; however, a system can be de- 
scribed by three general characteristics: 1) 
total cost, 2) rate of expenditure, and 3) 

~DEVELOPMENT~  T d ~MAINTENANCE~  
ACTIVITIES ACTIVIT~E$ 

TtME 

FIGURE 6. Yearly ra te  of  expendi tures  approx imates  
the  Rayle igh  curve.  To ta l  cost  {area unde r  curve) 
= K ,  a = 1 / T d  2, ra te  = 2 K a t e  -"t2 

completion date. Two of these characteris- 
tics are enough to determine the constants 
K and a. When a project is initiated, the 
proposed budget is an estimate of K, and 
the available personnel permits a to be 
calculated. Assuming that requirement 
analysis determines that these figures rep- 
resent an accurate assessment of the com- 
plexity of the problem, the estimated com- 
pletion date (the date when the expendi- 
tures reach a maximum} can be computed, 
and thus cannot be set arbitrarily during 
the requirements or specification stage. 
This method provides the basis for a cost 
estimation strategy that  has been applied 
to smaller projects in the 100 man-month 
range [BAsI78]. We may be close to a math- 
ematical theory of cost estimation which 
will greatly reduce our need to "guess" at 
project costs. 

M i l e s t o n e s  

A milestone is the specification of a demon- 
strable event in the development of a proj- 
ect. Milestones are scheduled by manage- 
ment to measure progress. "Coding is 90% 
complete" is not a milestone because the 
manager cannot know when 90% of the 
code is complete until the project itself is 
complete. 

There are many candidates for mile- 
stones: publication of the functional speci- 
fications, writing of individual module de- 
signs, module compiling without errors, 
units that  have been tested successfully, 
and so on. Milestones are scheduled fairly 
often to detect early slippage. PERT charts 
may be used to estimate the effects of slip- 
page in one stage on later stages. 

Reporting forms can give information 
useful for estimating when a future mile- 
stone will be reached. A general project 
summary, describing such overall charac- 
teristics as system size, cost, completion 
dates, or complexity, can be resubmitted 
with each milestone. Change reports can be 
submitted each time a module is altered. 
The use of a librarian probably means that  
such a form already exists. Weekly person- 
nel and computer reports monitor expend- 
itures, Although they add a minor overhead 
to the project, the information helps man- 
agement keep abreast of progress [BASI78, 
WALS77]. 
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Development Tools 

Compilers and certain debugging facilities 
have been available for some time. In con- 
trast, other programming aids are new and 
experience with them is less estensive. 
Cross referencing, attribute listings, and 
symbolic storage maps are examples of such 
aids. Auditors or database systems can help 
to control the organization of the develop- 
ing system. The Problem Statement Lan- 
guage/Problem Statement Analyzer 
(PSL/PSA) of the ISDOS project of the 
University of Michigan is one of the fwst 
database systems for providing a module 
library for storing source code, and includes 
a language for specifying interfaces in sys- 
tem design which can be checked automat- 
ically ITEm77]. RSL/SSL is a similar sys- 
tem designed to specify requirements and 
to design interfaces via a data management 
system [DAw77]. 

An alternative approach is the Program- 
mer's Workbench developed by Bell Tele- 
phone Laboratories [DOLo76]. A PDP 11 
based system provides a set of support rou- 
tines for module development, library 
maintenance, documentation, and testing. 
Proper use of these facilities allows access- 
ing information in an easier, controlled en- 
vironment. 

Reliability 

Conceptual Integrity 

Conceptual integrity, uniformity of style 
and simplicity of structure, are usually 
achieved by minimizing the number of in- 
dividuals in the project. A chief program- 
mer team greatly enhances conceptual in- 
tegrity. 

A small group minimizes contradictory 
aspects of a design. In the PL/I  language, 
for example, the PICTURE attribute dec- 
laration may be abbreviated as either PIC 
or P, but in format specifications it may 
only be P [ANSI76]. In F O R T R A N ,  the right 
side of an assignment statement can be an 
arbitrary arithmetic expression, but DO 
loop indices must be integer constants or 
variables, and subscripts to arrays are lim- 
ited to seven basic forms [ANSI66]. These 
are difficult idiosyncracies to remember. 
They illustrate a lack of conceptual integ- 

rity that can arise when many people with 
different objectives become involved in a 
project. A consistent design is less prone to 
errors because the user can follow a simple 
set of rules. 

Continual System Validation 

A walkthrough is a management review to 
discover errors in a system. In one study, 
TRW discovered that  the cost of fixing an 
error at the coding stage is about twice that 
of fixing it at the design stage, and catching 
it in testing costs about ten times as much 
as it does in design [BOEH76]. 

A walkthrough is scheduled periodically 
for all personnel. In attendance are the 
project manager (chief programmer), the 
person reviewed, and several others knowl- 
edgeable about the project. One section of 
the system is selected for review and each 
individual is given information about that 
section (for example, design document for 
a design walkthrough, code for a coding 
walkthrough) before the review. The per- 
son being reviewed then describes the mod- 
ule under study. 

The walkthrough is intended to detect 
errors, not to correct them. Also, the 
walkthrough is brief--not more than two 
hours. By explaining the design to others, 
the person reviewed is likely to discover 
vague specifications or missing conditions. 

An important point for management is 
that the walkthrough is not for personnel 
evaluation. If the person reviewed perceives 
that  he is being evaluated, he may attempt 
to cover up problems or present a rosy 
picture. 

An informal yet very effective version of 
the walkthrough is code reading. A second 
programmer reviews the code for each mod- 
ule. This technique frequently turns up er- 
rors when the second reader, failing to un- 
derstand some aspects of the code, asks the 
author for an explanation. 

3. PROGRAMMER ISSUES 

Each stage of the software development life 
cycle has its own set of problems and solu- 
tions. The most advanced techniques apply 
to the last stages; the first stages are the 
least developed. For example, testing and 
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debugging problems are apparent to every 
programmer; these tools are the oldest and 
most advanced. Techniques for improving 
coding were developed next. The most re- 
cent developments have related to require- 
ments and specifications. Although many 
technical problems have not been solved, 
an effective methodology is emerging. Some 
of these techniques are presented in the 
following subsections. 

Verification and Validation 

Verification and validation (module and in- 
tegration testing) of a system occupy about 
half of the development time of a project. 
Many debugging aids have been developed 
to facilitate this effort; most are imple- 
mented as programs to test some feature of 
a system. 

Automated Tools 

The earliest and most primitive debugging 
tools were the dump and the trace. A d u m p  
is a listing of the contents of the machine's 
memory. This listing can often reveal un- 
intelligible data or errors. Unfortunately, a 
dump may not be taken until long "after 
the fact" and the cause of the error may not 
then be apparent. A trace is a printout 
showing the values of selected variables 
after each statement is executed. It may 
help a programmer to discover errors. 

These techniques are not usually very 
effective because they supply much data 
with little or no interpretation. More ad- 
vanced methods are needed to reduce this 
data to an intelligible form. 

Flowgraph analyzers are capable of de- 
tecting references to variables which are 
never initialized or never reused after re- 
ceiving a value; these usually indicate er- 
rors. Test  data generators are also avail- 
able. Assertion checkers validate that  given 
conditions are true at indicated points of a 
program. Automatic verification systems 
have been implemented for small languages 
[KING69] and symbolic execution has been 
proposed as a practical means for validating 
programs in a more complex language. The 
PSL/PSA system is an example of a tool 
for assisting in design and specification. 
Symbolic dumps and traces are generated 

with compilers like PL/C [CoNw73] or 
PLUM [ZELK75]. Ramamoorthy and Ho 
[RAMA75] survey many of these tools. 

Cerhfication 

Programs can be verified at several levels. 
Conway [CoNW78] lists eight different ver- 
ification conditions: 

• A program contains no syntactic er- 
rors. 

• A program contains no compilation er- 
rors or faults during program execu- 
tion. 

• There exist test data for which the 
program gives correct answers. 

• For typical sets of test data, the pro- 
gram gives correct answers. 

• For difficult sets of test data, the pro- 
gram gives correct answers. 

• For all possible sets of data which are 
valid with respect to the problem spec- 
ification, the program gives correct an- 
swers. 

• For all possible sets of valid test data 
and all likely conditions of erroneous 
input, the program gives correct an- 
swers. 

• For all possible input, the program 
gives correct answers. 

Some people are optimistic that  one day 
complete automatic program verification 
will be possible. Today's tools operate a 
posteriori, demonstrating that a given pro- 
gram works. Tomorrow's tools will also op- 
erate a priori, helping to develop programs 
which are correct before they are ever run. 
Such tools can reduce the amount of testing 
required for a completed project [DIJK76]. 

Verification techniques have the follow- 
ing general structures. A program is repre- 
sented by a flowchart. Associated with each 
arc in the flowchart is a predicate, called an 
assertion. If A, is the assertion associated 
with an arc entering statement S, and Aj 
is the assertion on the arc following the 
statement, then the statement "If A, is true, 
and if statement S is executed, then asser- 
tion Aj will be true" must be proved (see 
Figure 7). 

This process can be repeated for each 
statement in a program. If A1 is the asser- 
tion immediately preceding the input node 
to the flowchart (that is, the initial asser- 
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FIGURE 7. Assertions A, and As surround each state- 
ment  of a program. 

tion), and if An is the assertion at the exit 
node (for example, the final assertion), then 
the statement "If AI is true, and the pro- 
gram is executed, then A, is true" will be 
the theorem that states that the program 
meets its specifications (AI and An) (see 
Figure 8). This approach was formalized by 
Hoare [HOAR69] who defined a set of ax- 
ioms for determining the effects upon the 
assertions (preconditions and postcondi- 
tions) by each statement type in a language. 
Thus verifying program correctness re- 
duces to proving a theorem of the predicate 
calculus. 

Certification technique development is 
still in a preliminary stage and does not 
meet the challenge of a modern large sys- 
tem. In addition, axiomatic certification is 
weak in the sense that the output assertion 
is proved true only if the program termi- 
nates. Axiomatic methods are incapable of 
proving termination. However, termination 
can often be proved informally by the pro- 
grammer. 

A typical approach to proving that pro- 
gram loops terminate is the following: 

1) Find some number P that is always 
nonnegative within the loop. 

2) Show that for each execution of the 
loop, P is decremented by at least a 
fixed amount. 

If both conditions are always true, the loop 
must terminate before P becomes negative. 
A programmer who uses such rules, even 
informally, will seldom write nonterminat- 
ing loops. 

Consider this program fragment: 

whi l e  x<y do 

x := x + l  

end  

Let quantity P be the expression y-x ,  and 
let P(i) refer to the value of P during the 
ith execution of the loop. Because x<y must 
be true for each next iteration, y - x  is al- 
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ways nonnegative and condition 1) is satis- 
fied for each execution of the loop. Since 
the loop contains the statement x := x+l ,  
P(i+I) = P( i ) - I ,  satisfying condition 2). 
Therefore the loop must terminate. 

Certification will not solve all our soft- 
ware problems, although it is an important 
tool. Gerhart and Yelowitz [GERH76] have 
shown that  there are many published "cer- 
tified" programs that contain errors. Even 
experts err. 

Formal Testing 

Goodenough and Gerhart [GooD75] have 
clarified the concepts of testing. A domain 
is the set of permissible inputs to a program, 
and a test is a subset of the domain. A 
testing criterion specifies what is to be 
tested (for example, specifications, all state- 
ments, all paths). 

A test is complete if the test meets all the 
requirements of the testing criterion, and a 
complete test is successful if the program 
gives correct results for each input in the 
test. 

With these definitions, we can define pro- 
gram reliability and validity. A program is 
reliable if every found error is revealed by 
every complete test. A program is vahd if 
every error is revealed by some complete 
test. 

With these definitions, several important 
results can be proved. Among these are: 

• If a program is both reliable and valid, 
then it is correct if and only if any 
complete test is also successful. 

• The criterion "execute every path" is 
not valid; there exist programs all of 
whose test sets succeed, but which pro- 
duce the wrong results for some input. 

While this framework is somewhat tech- 
nical and is not applicable to all program- 
ming, it is an important step in formalizing 
this area. We now have a basis for talking 

FIGURE 8. Predicates AE and An specify input-output  
behavior of a program. 
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about such concepts as reliability and cor- 
rectness. 

Mean Time Between Failure 

While useful for focusing our attention, an- 
alogies with other engineering fields must 
be used with care. Reliability is one area of 
incomplete analogies. The concept of m e a n  
t i m e  b e t w e e n  f a i l u r e  ( M T B F )  does not ap- 
ply directly to software although it some- 
times is used as if it does. 

Systems built from physical components 
wear out; transistors fail; motors burn out; 
soldered joints break. This is also true for 
the hardware of the computer. However, 
the logical components of software are du- 
rable. A given program will always produce 
the same answer for the same input, as long 
as the hardware does not fail. When a soft- 
ware module "fails," it has been presented 
with an input that  finally revealed an error 
present from the start. 

The MTBF measures the time between 
revelations of errors. This, in turn, depends 
on the kinds of inputs presented. A com- 
prier used only for short jobs from students 
may have a long MTBF; but if it is suddenly 
used for other applications, its MTBF may 
decrease sharply as unsuspected errors are 
exercised. A large MTBF can thus be inter- 
preted only as an indication of possible 
reliability, not as a proof of it. 

Error Days 

Since formal certification of large classes of 
programs is still unattainable, techniques 
for estimating the validity of programs are 
still being considered. Most of these tech- 
niques measure the number of errors dis- 
covered, which are assumed to be repre- 
sentative of the total number of errors pres- 
ent in the system, and hence a measure of 
the reliability of the system. 

Mills [MILL76] defines an er ror  d a y  as a 
measure stating that  one error remains un- 
detected in a system for one day. The total 
number of error days in a system is com- 
puted by summing, for each error, the 
length of time that  error was in the system. 
A high error day count may reveal many 
errors (poor design) or long-lived errors 
(poor development). 

The assumption is made that if a pro- 
gram is delivered with a low error day 
count, then there is a good chance that  it 
will remain low during future use. However, 
two major problems remain before this 
measure can be widely used. First, it is 
difficult to discover when a particular error 
first entered a system. Second, it may be 
difficult to obtain such information from 
the developer of a delivered product. 

Programming Techniques 

Several authors have mentioned that  the 
number of lines of code produced by a 
programmer in a given time tends to be 
independent of the language used. This im- 
plies that  higher level languages enhance 
productivity [BRoo75, HALS77]. This is 
true even though assembly language pro- 
grams are potentially more efficient; their 
potential is seldom realized in practice. 

The goals in developing early higher level 
languages were to be able to express clearly 
an algorithm and translate it into efficient 
machine language programs. The efficiency 
of the resulting code was all important. This 
led to some anomalies in FORTRAN arising 
from the structure of the IBM 704 for which 
it was developed (for example, the three- 
way branch of the arithmetic IF). ALGOL, 
which was developed as a machine-inde- 
pendent way of expressing algorithms, con- 
tained concepts whose implementation on 
conventional hardware was inefficient (e.g., 
recursion, call-by-name); this may explain 
why ALGOL is not widely used. 

By the late 1960s it was accepted that  
the language should facilitate writing the 
program and that  the machine should be 
designed to create an efficient run-time en- 
vironment. Today there is a definite shift 
toward using the language to make pro- 
gramming and documentation easier and to 
produce reliable and correct software. 

This does not mean, however, that  effi- 
ciency is ignored today. Whereas PL/ I  per- 
mits the writing of simple programs whose 
execution time is quite long, PASCAL was 
designed to exclude constructs whose ma- 
chine code is inefficient. Since hardware is 
less expensive than programmers, reliabil- 
ity has become a major factor: The pro- 
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grammer's task is made easier when the 
computer does more work. 

Structured Programming 

A major development in facilitating the 
programming task is known as structured 
programming, which has been erroneously 
called "gotoless" programming. Fortu- 
nately, the debate about "to goto or not to 
goto"  has mostly disappeared, and some 
clear ideas have emerged. The premise of 
structured programming is to use a small 
set of simple control and data structures 
with simple proof rules. A program then is 
built by nesting these statements inside 
each other. This method restricts the num- 
ber of connections between program parts 
and thereby improves the comprehensibil- 
ity and reliability of the program. 

The if-then-else,  while-do, and se- 
quence  statements are a commonly sug- 
gested set of control structures for this type 
of programming; however, there is nothing 
sacred about them. Knuth [KNUT74] has 
argued that the goto statement is irrele- 
vant to the true goals of structured pro- 
gramming. 

These simple control structures help pro- 
grammers certify programs, even at an in- 
formal level. For example, a program can 
be represented as a function from its input 
data to its output data. Suppose f(x) rep- 
resents a segment of a program given by 
the following if- then-else statement: 

ifp(x) t hen  g(x) else h(x). 

Because functions g and h are simpler than 
function f, their specifications should be 
simpler. If their specifications are known, 
the overall function f is defined by 

f(x) = ~p(x) --~ g(x)) V {qp(x) ---> h(x)). 

The programmer can express the formal 
definition of f in terms of the simpler defi- 
nitions of g and h. 

Languages such as  ALGOL, PASCAL, and 
certain subsets of PL/I  contribute to good 
programming practices by providing these 
facilities. In order to repair FORTRAN'S lack 
of structure, over 50 preprocessors for 
translating well-structured pseudo-FOR- 
TRAN programs into true FORTRAN have 
been developed [REIF76]. An if- then-else 
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has been added to the new FORTRAN-77 
standard, although a general while  is still 
missing from the language. 

System Design 

A technique related to structured program- 
ming is top-down design, in which a pro- 
grammer first formulates a subroutine as a 
single statement, which is then expanded 
into one or two of the basic control struc- 
tures mentioned earlier. At each level the 
function is expanded in increasingly greater 
detail until the resulting description be- 
comes the actual source language program 
in some programming language. 

Using this approach, also called stepwise 
refinement [WIRT71, WIRT74], the program 
is hierarchically structured and is described 
by successive refinements. Each refinement 
is interpreted by referring to other refine- 
ments of which it is a component. Concern- 
ing this method, Wirth states: 

I should like to stress that we should not be led to 
refer that actual program conception proceeds in 
such a well orgamzed, straightforward, "topdown" 
manner. Later refinement steps may often show 
that earher decisions are inappropriate and must 
be reconsidered. But thin neat, nes ted  factor~za- 
tmn  of a program serves admirably well to keep 
the individual building blocks intellectually man- 
ageabl~, to explain the program to an audience 
and to oneself, to rame the level of confidence in 
the program, and to conduct informal, and even 
formal proofs of correctness The emerging mod- 
ularity is particularly welcome if programs have 
to be adjusted to changed or extended speofica- 
tions. [WIRT74, p. 251] 

Operating systems are often modeled as 
hierarchies of abstract or virtual machines 
[BRIN77]. At the lowest level of the system 
is the physical hardware. Each new level 
provides additional capabilities, or allowa- 
ble functions on data, and hides some of 
the details of a lower level. For example, if 
one level accesses the paging hardware of 
the computer and provides a large virtual 
memory for all other processes, other ab- 
stract machines at higher levels can be im- 
plemented as if they had unlimited memory 
since this detail is controlled by a lower 
level. 

The concept of a program design lan- 
guage (PDL) to aid in this development 
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has been defined [CAIN75]. This type of 
language contains two structures: "outer" 
syntax of basic statement types, such as if- 
then-else,  while,  and s equence  for con- 
necting components, and an "inner" syntax 
that corresponds to the application being 
designed. The inner syntax is English state- 
ment oriented, and is expanded, step by 
step, until it expresses the algorithm in 
some programming language. Figure 9 rep- 
resents an example of a PDL design. 

It should be noted here that PSL/PSA 
and PDL complement each other. 
PSL/PSA is a specifications tool that vali- 
dates correct data usage between two mod- 
ules (interfaces). A system like PDL is use- 
ful for describing a given module at any 
level of detail. Both PSL/PSA and PDL 
can contribute to success in a large project. 

Even though designed from the top 
down, many systems are implemented from 
the bottom up. Low-level routines are first 
coded with drivers to test them; then new 
modules, using these low-level routines, are 
added, and the system is built up. 

Top-down development is another tech- 
nique for implementing hierarchically 
structured programs. Here the top-level 
routines are written first and lower level 
routines, called stubs, are written to inter- 
face with these. The stubs return control 
after printing a simple message and may 
return some fixed sample test values. The 
stub is eventually replaced by the full mod- 
ule which now includes calls to other stubs. 
In this manner an entire system can be 
gradually developed. 

If used carefully, this technique can be 
valuable; however, the system's correctness 
is assumed, not proved, until the last stub 

max. P R O C E D U R E  (list); 
/*  Find maximum element in a lint */ 
DECLARE (maxxmum, next) mteger, 
DECLARE list list of integers, 
maximum --- in:st element of list, 
DO WHILE (more elements in list); 

next -- next element of list, 
maxHnum = largest of next and maxnnum; 
END'  

R E T U R N  (maximum); 
E N D  max, 

FIGURE 9. PDL of a program to find the largest 
element in a hst  (outer syntax is m upper  case, inner 
syntax m lower case). 

has been replaced [DENN76a]. The docu- 
mentation specifies the assumptions on 
each stub. For example, if 

fix) = i fp (x)  t h e n  g(x) else  h(x) 

is a program fragment calling stubs g and 
h, then fwill be correct only if the modules 
eventually replacing the stubs g and h are 
correct. 

Via top-down development, a user sees 
the top-level interfaces in the system very 
early. He can then make changes relatively 
easily and soon. Another approach with the 
same goal is iterative enhancement [BASI 
75]. Using this technique, a subset of the 
problem is first designed and implemented. 
This gives the user a running system early 
in the life cycle when changes are easier to 
make. This process is repeated to develop 
successively larger subsets until the final 
product is delivered. 

Brooks [BRoo75] believes that the first 
version of a system is always "thrown 
away," because the concrete specifications 
for a system are often not defined until the 
system is completed, a time when the initial 
product meets those specifications rather 
poorly. It is often cheaper and faster to 
rebuild a system from scratch than to try 
to modify an existing product to meet these 
specifications. However, a developer will 
often deliver such a modified system as a 
"pro-release" if a deadline is near and the 
purchaser is demanding results. The buyer 
then suffers with this version, replete with 
errors, until he throws it away or has the 
product rebuilt. Iterative enhancement can 
make rebuilding less chaotic since there is 
a running system (not meeting all the re- 
quirements) early in the development cycle. 

Performance Issues 

The chosen algorithms and data structures 
have a much greater influence on program 
performance than code optimization or the 
programming language. Before choosing an 
algorithm, the programmer faces these 
questions: 

• Can previously written software be 
used? 

• If a new module must be written, what 
algorithms and data structures will 
give an efficient solution? 

Computing Surveys, Vol 10, No 2, June 1978 



Perspectives on Software Engineering . 213 

Programming languages usually include 
standard mathematical functions such as 
sine, logarithm, and square root. They give 
the programmer ready access to libraries of 
standard software packages. This allows 
the programmer to use results of previous 
work. In preparing programs for standard 
libraries, analysts have included many op- 
tions in a single package. The effect can be 
a large cumbersome package which is inef- 
ficient because only a small part of it is 
applicable at any one time. This can be 
avoided by installing multiple versions of 
the module for each special case. 

Many opportunities remain for more 
packaging and use of existing software. Dif- 
ficulties in achieving this include: 

• Identifying which standard algorithm 
to package. This is easier in mathe- 
matical areas such as statistical testing, 
integration, differentiation, and matrix 
computations than in many non-nu- 
merical areas such as business appli- 
cations. 

• Transporting and interfacing with 
packaged software. Some progress has 
been made with programs stored in 
read-only memories which plug into 
microprocessors, or with interface 
processors on computer networks. A 
major problem area lies in interfacing 
software directly to other software, 
since there are no conventions. Some 
help is afforded by such concepts as 
the "pipeline" in UNIX, which pro- 
rides a general communications chan- 
nel between programs [RtTC74]. 

Algonthm Analysis 

Sometimes the program specification is 
not changeable, and the analyst must find 
the best possible algorithm. Sometimes, 
however, the specifications can be altered 
to permit a more efficient solution. In some 
instances we can show that  there are no 
algorithms guaranteed to be efficient in all 
cases; here approximate algorithms that are 
efficient in most cases but need not give 
exact solutions must be used. 

The fast Fourier transform illustrates the 
most efficient form for computing the Four- 
ier transform, a technique useful in wave- 

form analysis [CooL65]. This transform is 
based on a finite set of points rather than 
on a complex integral which is harder to 
compute. Language analysis {parsing) in a 
compiler illustrates how changing the spec- 
ification can permit a more efficient solu- 
tion. Any string of N symbols in an arbi- 
trary context-free language can be parsed 
in time of order O(N**3) [YOuN67]; how- 
ever, a programming language need not in- 
clude all features of an arbitrary context- 
free language. PASCAL is an example of a 
language which can be parsed by a deter- 
ministic top-down parser in average time of 
order O(N) [AHo72]. If we are free to set 
language specifications, we can choose the 
language and be rewarded with efficient 
compilers. 

Many practical problems, such as job 
scheduling or network commodity flow, in- 
volve enumeration of a combinatorially 
large number of alternatives and selection 
of a best solution. In these cases it may be 
better to restrict the search for a subopti° 
mal but good answer. We recommend the 
paper by Weide [WEID77] for a discussion 
of the issues and a state-of-the-art survey 
of algorithm analysis. 

Efhciency 

In many cases the results of algorithmic 
analysis are not extensive enough to help 
the programmer; thus we need to offer tech- 
niques which can help locate and remove 
sources of inefficiency. One such tool is an 
optimizing compiler which, for some lan- 
guages, can yield significant improvements 
[LOwR69]. The value of such tools, how- 
ever, is limited [KNUT71] and may be re- 
alized only for programs which are used 
often enough to justify the investment in 
optimization. 

One of the most powerful aids is the 
frequency histogram, which reveals how 
often each statement of a program is exe- 
cuted. It is not unusual to find that  10% of 
the statements account for 80% of the exe- 
cution time [KNUT71]. A programmer who 
concentrates on these "bottlenecks" in his 
algorithms can realize significant perform- 
ance improvements at a minimum invest- 
ment. This technique has been used in some 
interactive operating systems, such as 
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UNIX and MULTICS, which started out 
as high-level language operating systems. 
Bottlenecks have been replaced by assem- 
bly language routines in less than 20% of 
the system. 

Theory of Specifications 

One area of software engineering that is 
now under study is system specifications. 
The objective is to state the specifications 
early using a metalanguage. This places 
restrictions on the design and may help 
establish whether the specifications are 
met. 

An early example of such a specification 
was the so-called "gotoless programming" 
[DIJK68, KNUT74]. It is properly called 
"structured programming." It restricts the 
form of statements a programmer may use, 
but  this restriction contributes to compre- 
hensibility and enhances a correctness 
proof. 

A second set of such rules employs the 
concepts of levels of abstraction, informa- 
tion hiding, and module interfacing to re- 
strict access to the internal structure of 
data. Parnas [PARN72] formalized these 
ideas which were standard practices of ex- 
pert programmers. He defines data as a 
collection of logical objects, each with a set 
of allowable states. Procedures can then be 
written to hide the representation of these 
objects inside separate modules. The user 
manipulates the objects by calling the spe- 
cial procedures. 

Several languages that facilitate the use 
of these concepts have been developed. 
Among these are EUCLID [POPE77], CLU 
[LISK77], and ALPHARD [WULF76]. These 
languages permit programmers to define 
abstract data types having the property to 
encapsulate the representation of the logi- 
cal objects [LISK 75]. When concurrency is 
an issue, the use of abstract objects must 
be controlled by synchronization (for ex- 
ample, locks, signals); in this case the ab- 
stract type managers are called monitors. 

Another kind of specification consists of 
"higher order software axioms" (HOS) 
[HAMI76], which are a set of six axioms that 
specify allowable interactions among proc- 
esses in a real-time system. One axiom pro- 
hibits a process from controlling its own 

execution, thereby ruling out recursion in a 
design. Another axiom states that no mod- 
ule controls its own input data space and is 
therefore unable to alter its input variables. 
While these axioms are not complete, they 
are a first step at formalizing specifications 
for system design. 

SUMMARY 

Boehm has stated seven principles that 
have helped organize the techniques dis- 
cussed in this paper [BOEH76]. 

1) Manage using a sequential life cycle 
plan. This means to follow the software 
development life cycle outlined earlier. It 
allows for feedback which updates previous 
stages as the consequences of previous de- 
cisions become unknown. It encourages 
milestones to measure progress. 

2) Perform continuous validation. Cer- 
tify each new refinement of a module. Use 
walkthroughs and code reading. Display 
the hierarchical structure of the system 
clearly in all documentation. 

3) Maintain disciplined product con- 
trol. All output of a project--design docu- 
ments, source code, user documentation, 
and so forth--should be formally approved. 
Changes to documents and program librar- 
ies must be strictly monitored and audited. 
Code reading, project reporting forms, li- 
brarians, a development library, and a proj- 
ect notebook all contribute to this goal. 

4) Use enhanced top-down structured 
programming. PL/I  and PASCAL have 
good control and data structures. Pre- 
processors exist which augment FORTRAN 
for these structures. Description techniques 
such as stepwise refinement, nested data 
abstractions, and data flow networks should 
be used. 

5) Maintain clear accountability. Use 
milestones to measure progress, and a proj- 
ect notebook to monitor each individual's 
efforts. 

6) Use better and fewer people. The 
chief programmer team, in which each in- 
dividual is skilled and accountable for his 
actions, and good results are rewarded, aids 
in this effort. 

7) Maintain commitment to improve 
process. Settle only for the best; strive for 
improvement. Be open to new develop- 
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ments in software engineering, but do not 
sacrifice reliability for modifiability while 
pursuing them. 

Progress has been made in understanding 
how large-scale software systems are built, 
yet more needs to be done. Management 
aids must be improved and project control 
techniques developed. The role of software 
management is coming more to resemble 
that of engineering management in other 
disciplines. We can no longer afford costly 
mistakes when systems are so large and we 
depend so much on them. Most impor- 
tantly, we must be patient; we need to gain 
experience on which future theories can 
rely. 
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