
2 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

focus
The Past, Present,
and Future of
Software Architecture

T
his special issue celebrates 10 years of software architecture con-
ferences and workshops and the 10th anniversary of the first
IEEE Software special issue on the topic in November 1995. We
aim to address the latest thinking about creating, capturing, and

guest editors’ introduction

Philippe Kruchten, University of British Columbia

Henk Obbink, Philips Research Europe

Judith Stafford, Tufts University

using software architecture throughout a soft-
ware system’s life. The articles we’ve chosen
cover innovative methods and techniques
emerging from research to support software
architecture practice. They also emphasize the
methods, techniques, tools, and software engi-
neering principles that support organizations
taking an architecture-centric approach to
software development.

What is software architecture?
Software architecture involves

■ the structure and organization by which
modern system components and subsys-
tems interact to form systems, and

■ the properties of systems that can best be
designed and analyzed at the system level.

For example, we largely determine end-to-end
performance and product-line compatibility
by evaluating software architectures. Software
architecture captures and preserves designers’
intentions about system structure and behav-
ior, thereby providing a defense against design
decay as a system ages. It’s the key to achiev-
ing intellectual control over a sophisticated
system’s enormous complexity.

Paradoxically, despite the maturing of the
discipline, we’re far from having a consensus on
a satisfying, short, crisp answer to this simple
question—no widely accepted definition exists.
Paul Clements lists several definitions on the
Software Engineering Institute’s architecture
practice site (www.sei.cmu.edu/architecture/
definitions.html). Getting agreement on a def-
inition was the most difficult task in creating
the IEEE standard.1 Actually, this lack of con-
sensus hasn’t been a substantial impediment to
the discipline’s progress, and it regularly pro-
vides a source of entertainment at gatherings
of software architects.

The software architecture field has many
subareas. The International Federation of In-
formation Processing Working Group 2.10 de-
fines these five:

■ Architectural design: How do we produce
an architecture?

■ Analysis: How do we answer questions, on
the basis of an architecture, about certain
qualities of the final product?

■ Realization: How do we produce a system
based on an architecture description?

■ Representation: How do we produce
durable artifacts to communicate architec-
ture to humans or machines?

■ Economics: What architectural issues drive
business decisions?

And certainly software architecture is tied
closely to other disciplines and communities,
such as software design (in general), software
reuse, systems engineering and system architec-
ture, enterprise architecture, reverse engineer-
ing, requirements engineering, and quality.

A brief history of software
architecture

Looking back in time will help us position
software architecture’s current status and future
directions. We also provide pointers to relevant
books, papers, conferences, and Web sites.

Pre-1995
The first reference to the phrase software

architecture occurred in 1969 at a conference
on software engineering techniques organized
by NATO (see the sidebar “Software Architec-
ture in 1969”). Some of our field’s most pres-
tigious pioneers, including Tony Hoare, Edsger
Dijkstra, Alan Perlis, Per Brinch Hansen,
Friedrich Bauer, and Niklaus Wirth, attended
this meeting.

From then until the late 1980s, the word
“architecture” was used mostly in the sense of
system architecture (meaning a computer sys-
tem’s physical structure) or sometimes in the
narrower sense of a given family of comput-
ers’ instruction set. Key sources about a soft-
ware system’s organization came from Fred
Brooks in 1975,2 Butler Lampson in 1983,3

David Parnas from 1972 to 1986,4–7 and John
Mills in 1985 (whose article looked more into
the process and pragmatics of architecting).8

The concept of software architecture as a dis-
tinct discipline started to emerge in 1990 (see fig-
ure 1). A 1991 article by Winston W. Royce and
Walker Royce, father and son, was the first to
position software architecture—in both title and
perspective—between technology and process.9

Eberhardt Rechtin dedicated a few sections to
software in his 1991 book Systems Architecting:
Creating and Building Complex Systems.10 That
year, one of us (Philippe Kruchten) wrote an ar-
ticle marrying iterative development with a focus
on architecture and defined multiple views for
use on a large command-and-control system.11

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 2 3

The concept
of software
architecture
as a distinct
discipline
started to

emerge in 1990.

In 1992, Dewayne Perry and Alexander
Wolf published their seminal article “Founda-
tions for the Study of Software Architec-
ture.”12 This article introduced the famous
formula “{elements, forms, rationale} = soft-
ware architecture,” to which Barry Boehm
added “constraints” shortly thereafter. For
many researchers, the “elements” in the for-
mula were components and connectors. These
were the basis for a flurry of architecture de-
scription languages (ADLs), including C2,

Rapide, Darwin, Wright, ACME, and Unicon,
which unfortunately haven’t yet taken much
root in industry.

1994 saw the first book on software archi-
tecture, by former IBMers Bernard Witt, F.
Terry Baker, and Everett Merrit.13

1995–1998
In 1995, software architecture really started

to bloom, and events accelerated with numer-
ous contributions to the field from industry and
academia. Notable examples were the Software
Architecture Analysis Method (SAAM), the
first of a Software Engineering Institute series of
methods;14 several approaches involving mul-
tiple views such as Rational’s 4+1 views15 or
Siemens’ four views;16 and specific design pat-
terns for software architecture.17 Siemens,18

Nokia,19 Philips,20 Nortel, Lockheed Martin,
IBM, and other large software development or-
ganizations—mainly in systems, aerospace, and
telecommunications—started to pay attention
to software architecture, teaming up with the
reuse community to investigate software prod-
uct line architectures.21 Another book by
Rechtin and Mark Maier, The Art of Systems
Architecting, nicely filled the gap between sys-
tem and software.22

1999–2005
1999 was another key year for software ar-

chitecture, seeing the first IFIP Conference on
Software Architecture23 and the founding of
IFIP Working Group 2.10 and the Worldwide
Institute of Software Architects. Many nonaca-
demics started to pitch in best practices.24–27

In hopes of increasing the practice of architec-
ture description, the Open Group introduced
the Architecture Description Markup Lan-
guage, an XML-based ADL that provides sup-
port for broad sharing of architectural models.
Joining forces with the reuse and product-fam-
ilies communities, software product lines be-
came a sort of subdiscipline, attracting lots of
attention of large manufacturing companies.
New methods such as SAAM, BAPO, and
ATAM emerged or consolidated.14,28,29 We
had one general architecture standard, RM-
ODP,30,31 and we added one, IEEE 1471.1 The
SEI team produced book after book,29,32–34

and more.

Where are we now?
Large companies such as Microsoft have

2 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Ian P. Sharp made these comments at the 1969 NATO Conference on
Software Engineering Techniques. They still resonate well 37 years later.

I think that we have something in addition to software engineering: some-
thing that we have talked about in small ways but which should be
brought out into the open and have attention focused on it. This is the sub-
ject of software architecture. Architecture is different from engineering.

As an example of what I mean, take a look at OS/360. Parts of OS/360 are
extremely well coded. Parts of OS, if you go into it in detail, have used all
the techniques and all the ideas which we have agreed are good program-
ming practice. The reason that OS is an amorphous lump of program is
that it had no architect. Its design was delegated to a series of groups of
engineers, each of whom had to invent their own architecture. And when
these lumps were nailed together they did not produce a smooth and beau-
tiful piece of software.

I believe that a lot of what we construe as being theory and practice is in
fact architecture and engineering; you can have theoretical or practical ar-
chitects: you can have theoretical or practical engineers. I don’t believe, for
instance, that the majority of what Dijkstra does is theory—I believe that
in time we will probably refer to the “Dijkstra School of Architecture.”

What happens is that specifications of software are regarded as functional
specifications. We only talk about what it is we want the program to do. It
is my belief that anybody who is responsible for the implementation of a
piece of software must specify more than this. He must specify the design,
the form; and within that framework programmers or engineers must cre-
ate something. No engineer or programmer, no programming tools, are go-
ing to help us, or help the software business, to make up for a lousy design.
Control, management, education and all the other goodies that we have
talked about are important; but the implementation people must under-
stand what the architect had in mind.

Probably a lot of people have experience of seeing good software, an indi-
vidual piece of software which is good. And if you examine why it is good,
you will probably find that the designer, who may or may not have been
the implementer as well, fully understood what he wanted to do and he
created the shape. Some of the people who can create shape can’t imple-
ment and the reverse is equally true. The trouble is that in industry, partic-
ularly in the large manufacturing empires, little or no regard is being paid
to architecture. —Software Engineering Techniques: Report of a Conference
Sponsored by the NATO Science Committee, B. Randell and J.N. Buxton,
eds., Scientific Affairs Division, NATO, 1970, p. 12.

Software Architecture in 1969

their chief architects. There’s been a slight in-
flation in titles from software designer and de-
veloper to software architect, despite Mary
Shaw’s plea a few years ago to avoid calling
everything in sight architecture.

We now have many rich ADLs. But few are
in practical use except perhaps Koala,35 and
perhaps UML if you consider it an ADL
(many ADL purists do not).

For several domains, precooked architec-
tures exist in the form of platforms—for in-
stance, J2EE, .NET, Symbian/Series 60, and
Websphere. Application layer interchange stan-
dards such as XML and SOAP have a signifi-
cant impact on these architectures. Scripting
languages like Python and Perl change the way
we construct systems. Architects can’t start
from scratch anymore; they build systems
based on their insights regarding these plat-

forms’ capabilities. Also, open source software
is strongly affecting the practice.

A body of software architecture knowledge
is readily accessible in more than 25 books (see
the “Architecture Library” sidebar) and nu-
merous articles (see the “Great Papers” side-
bar). Dozens of universities around the world
teach software architecture, many organiza-
tions offer architect training courses, and an
active community has formed (see the “Soft-
ware Architecture Community” sidebar).

A discipline has emerged.

The articles in this issue
The importance of software architecture

for software development is widely recog-
nized, yet transfer of innovative techniques
and methods from research to practice is slow.
We chose the articles in this issue specifically

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 2 5

UML 2

Witt et al

94

Shaw
Garlan

96

Bass et al

99

Clements Doc

02

Blue

Green

Red

Conferences

Languages

Papers

Books

Methods

GOF
Patterns

95
Rechtin

97

Hofmeister

99

Clements Eval

02

Perry, Wolf
Adobe

92

RM ODP
Adobe

95

Boxology
Adobe

97

IEEE 1471

Adobe

Adobe

00 Shaw
Coming
of Age

Adobe

01

UML 1.1

Koala

Darwin
Rapide

Acme C2

MIL
CSP

SAAM

Building
Blocks

RUP

ATAM

COPA

BAPO

ATAM 2

ADD

EWSA 04

QOSA 05

WICSA 05

SPLC 01
WICSA 01

WICSA 02

WICSA 03

WICSA 04

ISAW-4

ISAW-3

ISAW-2

ISAW-1

ADML

Wright

Before
1992

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

Figure 1. Ten years of
software architecture.

because their ideas and results will be of inter-
est to readers wishing to increase the adoption
of software architecture-related techniques
and methods in their work environment. “The
Golden Age of Software Architecture” by Mary

Shaw and Paul Clements specifically addresses
the discipline’s maturation. After applying the
Redwine-Riddle model of technology matura-
tion to this field, the authors conclude that the
broad concept of software architecture has

2 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

We recommend the following 12 books to any budding soft-
ware architect. They cover a vast range of issues and provide the
necessary foundation for further study, research, and application.

The first book
■ M. Shaw and D. Garlan, Software Architecture: Perspectives

on an Emerging Discipline, Prentice Hall, 1996. This book
put software architecture firmly on the world map as a disci-
pline distinct from software design or programming, and it’s
still a worthwhile read. The authors tried to define what soft-
ware architecture is—a difficult task. We still haven’t reached
consensus 10 years later. Much of the book is dedicated to
the concept of architectural styles, and there’s a useful chapter
on educating software architects.

The SEI trilogy
■ L. Bass, P. Clements, and R. Kazman, Software Architecture

in Practice, 2nd ed., Addison-Wesley, 2003. Originally
published in 1998, this book expanded many aspects of
software architecture: process and method, representation,
techniques, tools, and business implications. It provides a
good introduction to several SEI architectural methods.

■ P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Lit-
tle, R. Nord, and J. Stafford, Documenting Software Architec-
tures: Views and Beyond, Addison-Wesley, 2002. Focused
solely on software architecture documentation and represen-
tation, this book constitutes a de facto application guide
to the rather abstract IEEE Standard 1471-2000, Recom-
mended Practice for Architectural Description of Software-
Intensive Systems.

■ P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architecture, Addison-Wesley, 2002. How good is this ar-
chitecture? The third book in the SEI trilogy (this productive
group actually wrote more than three) focuses on review-
ing and evaluating various aspects of “goodness” and
qualities of an architecture, existing or to be built. A good
complement to the Software Architecture Review and As-
sessment (SARA) Report (SARA Working Group, 2002).

Ammunition for architects
■ C. Hofmeister, R. Nord, and D. Soni, Applied Software Ar-

chitecture, Addison-Wesley, 1999. The authors offer a sys-
tematic, detailed architectural-design method and a repre-
sentation of software architecture based on their work at
the Siemens Research Center.

■ I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Ar-
chitecture, Process and Organization for Business Success,
Addison-Wesley, 1997. As the title indicates, this book
bridges the software reuse community (which was thriving
but running a bit out of air in the mid-1990s) with the ar-
chitecture community, showing how the two can leverage
each other. It presents elements of the architectural method
the Rational Unified Process embodies. If reuse and product
lines are important to you, we’ll suggest more reading later.

■ F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System
of Patterns, John Wiley & Sons, 1996. Branching off from
the design pattern work of the Gang of Four, this “Gang of
Five” assembled a useful catalog of architectural-design
patterns. Unfortunately, they haven’t continued what they
had started so well.

Pragmatics
■ R.C. Malveau and T.J. Mowbray, Software Architect Boot-

camp, 2nd ed., Prentice Hall, 2000. This “how to get
started” guide is directed at practitioners.

■ D.M. Dikel, D. Kane, and J.R. Wilson, Software Architec-
ture: Organizational Principles and Patterns, Prentice Hall,
2001. The authors have captured the dynamics of what
happens in a software architecture team—the constraints,
tensions, and dilemmas—in their VRAPS (vision, rhythm, an-
ticipation, partnering, and simplification) model.

■ E. Rechtin and M. Maier, The Art of Systems Architecting,
CRC Books, 1997. Rechtin’s initial book in 1991 was about
systems and very little about software, although software ar-
chitects could transpose and interpret many of the principles
presented. By teaming up with Mark Maier, Rechtin was
able to cover software aspects more specifically and deeply.
However, beginners will find it hard to read, so they should
start with the first two books in this group.

Software product lines
■ J. Bosch, Design and Use of Software Architecture: Adopt-

ing and Evolving a Product-Line Approach, Addison-Wesley,
2000. This book and the next represent the branching off
of software architecture into its application for software
product lines.

■ M. Jazayeri, A. Ran, F. van der Linden, and P. van der Lin-
den, Software Architecture for Product Families: Principles
and Practice, Addison-Wesley, 2000.

Starting Your Software Architecture Library

run the full course of the model and is a fully
mature technology. This article updates Mary
Shaw’s 2001 article “The Coming-of-Age of
Software Architecture Research,”36 which re-
mains a must-read for anyone who wants to
embark on software architecture research.

The other articles in this issue address a wide

range of topics targeted at the software devel-
opment community as a whole. We selected
these articles from among three dozen submis-
sions to highlight the field’s current trends.

The first article, “In Practice: UML Software
Architecture and Design Description” by Chris-
tian Lange, Michel Chaudron, and Johan

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 2 7

If you’re not a great fan of books (see the “Starting Your
Software Architecture Library” sidebar), you can get a quick in-
troduction to many of the underlying concepts from this collec-
tion of key papers.

Foundations
■ M. Shaw and D. Garlan, “An Introduction to Software Ar-

chitecture,” V. Ambriola and G. Tortora, eds., Advances in
Software Engineering and Knowledge Engineering, vol. 2,
World Scientific Publishing, 1993, pp. 1–39. Shortly pre-
ceding their book, this paper brought together what we
knew about software architecture in the beginning of the
1990s.

■ D.E. Perry and A.L. Wolf, “Foundations for the Study of
Software Architecture,” ACM Software Eng. Notes, vol. 17,
no. 4, 1992, pp. 40–52. This seminal paper will be always
remembered for giving us this simple but insightful formula:
{elements, form, rationale} = software architecture.

Precursors
■ D.L. Parnas, “On the Criteria to Be Used in Decomposing

Systems into Modules,” Comm. ACM, vol. 15, no. 12,
1972, pp. 1053–1058. Software architecture didn’t pop
up out of the blue in the early 1990s. Although David Par-
nas didn’t use the term “architecture,” many of the underly-
ing concepts and ideas owe much to his work. This article
and the next two are the most relevant in this regard.

■ D.L. Parnas, “On the Design and Development of Program
Families,” IEEE Trans. Software Eng., vol. 2, no. 1, 1976,
pp. 1–9.

■ D.L. Parnas, P. Clements, and D.M. Weiss, “The Modular
Structure of Complex Systems,” IEEE Trans. Software Eng.,
vol. 11, no. 3, 1985, pp. 259–266.

■ F. DeRemer and H. Kron, “Programming-in-the-Large
versus Programming-in-the-Small,” Proc. Int’l Conf. Reli-
able Software, ACM Press, 1975, pp. 114–121. Their
Module Interconnection Language (MIL 75) is in effect
the ancestor of all ADLs, and its design objectives are
still valid today. The authors had a clear view of archi-
tecture as distinct from design and programming at the
module level but also at the fuzzy, abstract, “high-level
design” level.

Architectural views
■ D. Soni, R. Nord, and C. Hofmeister, “Software Architec-

ture in Industrial Applications,” Proc. 17th Int’l Conf. Soft-
ware Eng. (ICSE 95), ACM Press, 1995, pp. 196–207.
This article introduced Siemens’ five-view model, which the
authors detailed in their 1999 book Applied Software Ar-
chitecture (see the “Architecture Library” sidebar).

■ P. Kruchten, “The 4+1 View Model of Architecture,” IEEE
Software, vol. 12, no. 6, 1995, pp. 45–50. Part of the Ra-
tional Approach—now known as the Rational Unified
Process—this set of views was used by many Rational con-
sultants on large industrial projects. Its roots are in the
work done at Alcatel and Philips in the late 1980s.

Process and pragmatics
■ B.W. Lampson, “Hints for Computer System Design,” Oper-

ating Systems Rev., vol. 15, no. 5, 1983, pp. 33–48;
reprinted in IEEE Software, vol. 1, no. 1, 1984, pp. 11–28.
This article and the next gave one of us (Kruchten), a bud-
ding software architect in the 1980s, great inspiration.
They haven’t aged and are still relevant.

■ J.A. Mills, “A Pragmatic View of the System Architect,”
Comm. ACM, vol. 28, no. 7, 1985, pp. 708–717.

■ W.E. Royce and W. Royce, “Software Architecture: Inte-
grating Process and Technology,” TRW Quest, vol. 14, no.
1, 1991, pp. 2–15. This article articulates the connection
between architecture and process very well—in particular,
the need for an iterative process in which early iterations
build and validate an architecture.

Two more for the road
Where do we stop? We’re tempted to add many more arti-

cles on such ADLs as Rapide, Wright, and C2 as well as on
model-driven architecture. We’ll just add two more.

■ M. Shaw and P. Clements, “A Field Guide to Boxology: Pre-
liminary Classification of Architectural Styles for Software
Systems,” Proc. 21st Int’l Computer Software and Applica-
tions Conf. (COMPSAC 97), IEEE CS Press, 1997, pp. 6–13.

■ M. Shaw, “The Coming-of-Age of Software Architecture
Research,” Proc. 23rd Int’l Conf. Software Eng. (ICSE 01),
IEEE CS Press, 2001, pp. 656–664a.

Great Papers on Software Architecture

Muskens provides a large-scale survey of UML
use and its associated benefits and problems.

The second article, “Software Architecture-
Centric Methods and Agile Development” by

2 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Here are a dozen places to go for more information on soft-
ware architecture, to participate in or attend conferences, or to
join a group of peers.

Resources
■ The Software Engineering Institute’s Software Architecture

for Software-Intensive Systems Web site (www.sei.cmu.
edu/architecture) contains many definitions, papers on
their methods, and further pointers. The software architec-
ture practice group at the Software Engineering Institute
maintains this portal.

■ The Gaudí System Architecting Web page (www.gaudisite.
nl), named after the famous Spanish architect, deals with
system architecture. Gerrit Muller from Philips Research and the
Embedded Systems Institute in Eindhoven maintains the page.

■ The Bredemeyer architecture portal (www.bredemeyer.com),
called “Software Architecture, Architects and Architecting,”
is maintained by Dana Bredemeyer and Ruth Malan. It con-
tains not only their own writings but also a well-organized
collection of other resources and announcements.

■ The Software Product Lines page (http://softwareproductlines.
com) focuses on product lines and large-scale reuse.

■ SoftwareArchitectures.com (http://softwarearchitectures.
com) is another portal to architecture resources.

■ Grady Booch, from IBM, is spearheading an effort to es-
tablish a handbook for software architects and is building
a repository of example architectures and case studies
(www.booch.com/architecture/index.jsp).

Conferences
■ Working IEEE/IFIP Conferences on Software Architecture

(www.softwarearchitectureportal.org/WICSA/conferences).
Since 1999, WICSA has attracted a lot of contributions from
industry and academia and many interesting debates and
advances. Its location alternates between North America
and another part of the world (only Europe so far). WICSA

subsumed the International Software Architecture Work-
shop series which ran from 1995 to 2000.

■ European Workshop on Software Architecture (www.arch-
ware.org/ewsa). Begun in 2004, EWSA is mainly driven
by the participants in the European project ArchWare—
Architecting Evolvable Software.

■ Software Product Line Conference (http://softwareproductlines.
com). Since 2000, this subcommunity of software architecture
has organized a successful meeting series. SPLC subsumed
the older PFE (Product Family Engineering) conference series
in Europe. Start from this site to access the most recent SPLC.

■ The Conference on the Quality of Software Architectures,
or QOSA (http://se.informatik.uni-oldenburg.de/qosa)
was a new conference in 2005.

■ Software architecture is also present—often in the form of
a specific session or a distinct track—in other conferences,
including ICSE; ECOOP (European Conference on Object-
Oriented Programming); OOPSLA (Object-Oriented Pro-
gramming Systems, Languages, and Applications); FSE
(Foundation of Software Engineering); APSEC (Asia-Pacific
Software Engineering Conference); and now MODELS

(ACM/IEEE International Conference on Model-Driven En-
gineering Languages and Systems), which subsumed the
UML conference series.

Associations and working groups
■ IFIP WG 2.10 Software Architecture (www.ifip.org/bulletin/

bulltcs/memtc02.htm#wg210). Founded at the first WICSA

conference in 1999, the 13 or so members of the IFIP’s
Working Group 2.10 meet face to face twice a year and a
few more times by telephone and the Internet. They are the
driving force behind the WICSA conference series and this
special issue of IEEE Software. They also maintain the
www.softwarearchitectureportal.org portal.

■ The Worldwide Institute of Software Architects, or WWISA

(www.wwisa.org) was founded by Mark and Laura Sewell
in 1999.

■ The International Association of Software Architects, or
IASA (www.iasarchitects.org) is an association of IT archi-
tects focusing on social networking, advocacy, ethics, and
knowledge sharing.

■ IEEE Standards Association WG 1471 (http://standards.
ieee.org). The working group that created IEEE Std 1471-
2000 is now resurrecting itself to tackle a revision of the
standard.

■ SARA—Software Architecture Review and Assessment. This
informal group of architects from industry (Philips, Siemens,
Rational, Nokia, IBM, and Lockheed Martin) met regularly
from 1998 to 2001 to share software evaluation practices.
They produced a report in 2001 (www.philippe.kruchten.
com/architecture/SARAv1.pdf).

■ Research and education. Many academics and researchers
maintain pages with pointers to their research and other
resources. We picked just two examples: Nenad Medvi-
dovic, University of Southern California, http://sunset.usc.
edu/research/software_architecture/index.html; and Gert
Florijn, Software Engineering Research Center in the Nether-
lands, www.serc.nl/people/florijn/interests/arch.html.

A Software Architecture Community

Robert L. Nord and James E. Tomayko (re-
cently deceased), presents the interesting con-
cept of leveraging the best aspects of architec-
ture-centric methods and agile development.
Combining these approaches can help address
quality attributes and maintain flexibility.
Michael Stal’s article, “Using Architectural Pat-
terns and Blueprints for Service-Oriented Ar-
chitecture,” uses published patterns to explain
an SOA-based system’s fundamental structures.
This subject area interests most practitioners
and is particularly relevant at the moment.

“Using Architecture Models for Runtime
Adaptability” by Jacqueline Floch, Svein Hall-
steinsen, Erlend Stav, Frank Eliassen, Ketil
Lund, and Eli Gjørven extends the need for ar-
chitectural reasoning to runtime analysis, be-
cause of the advent of software platforms that
support component plug-ins and dynamic bind-
ing. It shows that you can achieve a dynami-
cally adaptive architecture by following a
well-defined approach that cleanly separates
various concerns. It also shows an interesting
use of architecture models that are available at
runtime and takes architecture in new direc-
tions, including mobile computing and run-
time adaptability. The fifth article, “Architec-
ture Description Languages for High-Integrity
Real-Time Systems” by Alek Radjenovic and
Richard Paige, addresses architectural concerns
beyond the typical structural ones and the use
of an ADL for that purpose. Finally, “A Fault-
Tolerant Architectural Approach for Depend-
able Systems” by Rogério de Lemos, Paulo As-
terio de Castro Guerra, and Cecília Mary
Fischer Rubira describes the process ingredients
to arrive at a dependable system, sketches the
role of exception handling in fault tolerance,
and introduces an ideal fault-tolerant architec-
tural element.

W hat will the next decade bring? A lot
of research is dedicated to model-
driven architecture, again with

UML in the background,37,38 while research on
special-purpose ADLs seems to have reached a
plateau. Some researchers are looking into ar-
chitectural knowledge—that is, architectural-
design decisions and their rationale.39 Increas-
ing support for educating software architects
will include more and better case studies and
textbooks. Tools that are specifically tailored

for architects will be made available to support
their design, representation, analysis, and im-
plementation tasks. The concept of aspects will
intersect with and affect research on the quality
of software architecture. Software architecture
will be recognized as a key foundation to agile
software development, despite the fact that it’s
ignored or even despised by the most ardent
“agilistas,” who have nicknamed it BUFD (big
up-front design).

Acknowledgments
We thank our colleagues in IFIP Working Group

2.10 on Software Architecture for their input, particu-
larly those who participated in the discussions at our
August 2005 meeting in Krapi, Finland.

References
1. IEEE 1471:2000, Recommended Practice for Architec-

tural Description of Software-Intensive Systems, IEEE
Press, 2000.

2. F.P. Brooks Jr., The Mythical Man-Month, Addison-
Wesley, 1975.

3. B.W. Lampson, “Hints for Computer System Design,”
Operating Systems Rev., vol. 15, no. 5, 1983, pp. 33–48.

4. D.L. Parnas, “On the Criteria to Be Used in Decompos-
ing Systems into Modules,” Comm. ACM, vol. 15, no.
12, 1972, pp. 1053–1058.

5. D.L. Parnas, “On the Design and Development of Pro-
gram Families,” IEEE Trans. Software Eng., vol. 2, no.
1, 1976, pp. 1–9.

6. D.L. Parnas and P. Clements, “A Rational Design

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 2 9

About the Authors

Philippe Kruchten is a professor of software engineering at the University of British
Columbia. His research interests include software architecture, software development processes,
and software project management. He received his doctorate degree from L’École Nationale
Supérieure des Télécommunications. He’s a founding member of IFIP WG2.10 on Software Ar-
chitecture. He’s a professional engineer in British Columbia, a Certified Software Development
Professional, a senior member of the IEEE Computer Society, and the author of The Rational
Unified Process—An Introduction (Addison-Wesley, 2003, 3rd ed.). Contact him at the UBC,
2332 Main Mall, Vancouver, BC V6T1Z4, Canada; kruchten@ieee.org.

Henk Obbink is a principal scientist at Philips Research Laboratories in Eindhoven. He
heads the architecture research team for software-intensive healthcare systems. His research in-
terests have included computer systems, communication systems, defense systems, and con-
sumer products. He received his doctorate in chemistry and physics from the University in
Utrecht. He’s a member of the IFIP Working Group 2.10 on Software Architecture and the steer-
ing committees of the Working IEEE/IFIP Conference on Software Architecture and the Software
Product Line Conference. Contact him at Philips Research Laboratories Europe, High Tech Cam-
pus 31, WDC 2.030, 5656 AE Eindhoven, the Netherlands; henk.obbink@philips.com.

Judith Stafford is a senior lecturer at Tufts University and a visiting scientist at Carnegie
Mellon University’s Software Engineering Institute. Her research focuses on software architec-
ture analysis, architecture support for software component composition, and software architec-
ture documentation. She coauthored Documentation Software Architectures (Addison-Wesley,
2002). She received her PhD in computer science from the University of Colorado at Boulder.
She’s a member of the IEEE Computer Society, ACM SIGSOFT and SIGPLAN, and the IFIP Working
Group on Software Architecture (WG2.10). Contact her at the Dept. of Computer Science, Tufts
Univ., Medford, MA 02155; jas@cs.tufts.edu; www.cs.tufts.edu/~jas.

Process: How and Why to Fake It,” IEEE Trans. Soft-
ware Eng., vol. 12, no. 2, 1986, pp. 251–257.

7. D.L. Parnas, P. Clements, and D.M. Weiss, “The Modu-
lar Structure of Complex Systems,” IEEE Trans. Soft-
ware Eng., vol. 11, no. 3, 1985, pp. 259–266.

8. J.A. Mills, “A Pragmatic View of the System Architect,”
Comm. ACM, vol. 28, no. 7, 1985, pp. 708–717.

9. W.E. Royce and W. Royce, “Software Architecture: In-
tegrating Process and Technology,” TRW Quest, vol.
14, no. 1, 1991, pp. 2–15.

10. E. Rechtin, Systems Architecting: Creating and Building
Complex Systems, Prentice Hall, 1991.

11. P. Kruchten, “Un Processus de Développement de Logi-
ciel Itératif et Centré sur l’Architecture [An Iterative
Software Development Process Centered on Architec-
ture],” Proc. 4ème Congrès de Génie Logiciel, EC2,
1991, pp. 369–378.

12. D.E. Perry and A.L. Wolf, “Foundations for the Study
of Software Architecture,” ACM Software Eng. Notes,
vol. 17, no. 4, 1992, pp. 40–52.

13. B. Witt, F.T. Baker, and E. Merritt, Software Architec-
ture and Design: Principles, Models, and Methods, Van
Nostrand Reinhold, 1994.

14. R. Kazman et al., “SAAM: A Method for Analyzing the
Properties of Software Architectures,” Proc. 16th Int’l
Conf. Software Eng. (ICSE 94), IEEE CS Press, 1994,
pp. 81–90.

15. P. Kruchten, “The 4+1 View Model of Architecture,”
IEEE Software, vol. 12, no. 6, 1995, pp. 45–50.

16. D. Soni, R. Nord, and C. Hofmeister, “Software Archi-

tecture in Industrial Applications,” Proc. 17th Int’l
Conf. Software Eng. (ICSE-17), ACM Press, 1995, pp.
196–207.

17. F. Buschmann et al., Pattern-Oriented Software Architec-
ture: A System of Patterns, John Wiley & Sons, 1996.

18. C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture, Addison-Wesley, 1999.

19. A. Ran, “ARES Conceptual Framework for Software
Architecture,” Software Architecture for Product Fami-
lies: Principles and Practice, M. Jazayeri, A. Ran, and F.
van der Linden, eds., Addison-Wesley, 2000, pp. 1–29.

20. J.K. Müller, “Integrating Architectural Design into the
Development Process,” Proc. 1995 Int’l Symp. and
Workshop Systems Eng. of Computer-Based Systems,
IEEE Press, 1995, pp. 114–121.

21. I. Jacobson, K. Palmkvist, and S. Dyrhage, “Systems of In-
terconnected Systems,” Report on Object-Oriented Analy-
sis and Design (ROAD), vol. 2, no. 1, May-June 1995.

22. E. Rechtin and M. Maier, The Art of Systems Architect-
ing, CRC Books, 1997.

23. P. Donohue, ed., Software Architecture—1st IFIP Conf.
Software Architecture (WICSA 1), Kluwer Academic
Publishers, 1999.

24. R.C. Malveau and T.J. Mowbray, Software Architect
Bootcamp, 2nd ed., Prentice Hall, 2000.

25. D.M. Dikel, D. Kane, and J.R. Wilson, Software Archi-
tecture: Organizational Principles and Patterns, Prentice
Hall, 2001.

26. H. Obbink et al., Report on Software Architecture Re-
view and Assessment (SARA), V1.0, Feb. 2002; www.
philippe.kruchten.com/architecture/SARAv1.pdf.

27. P. Kruchten, The Rational Unified Process—An Intro-
duction, Addison-Wesley, 1998.

28. H. Obbink et al., “COPA: A Component-Oriented Plat-
form Architecting Method for Families of Software-In-
tensive Electronic Products (Tutorial),” Proc. 1st Soft-
ware Product Line Conf. (SPLC1), 2000; www.extra.
research.philips.com/SAE/COPA/COPA_Tutorial.pdf.

29. P. Clements, R. Kazman, and M. Klein, Evaluating Soft-
ware Architecture, Addison-Wesley, 2002.

30. ISO/IEC 10746:1995, Reference Model of Open Dis-
tributed Processing (RM-ODP), ITU Rec. X901, 1995.

31. J. Putman, Architecting with RM-ODP, Prentice Hall,
2000.

32. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, Addison-Wesley, 1998.

33. P. Clements et al., Documenting Software Architectures:
Views and Beyond, Addison-Wesley, 2002.

34. P. Clements and L. Northrop, Software Product Lines:
Practice and Patterns, Addison-Wesley, 2002.

35. R. van Ommering et al., “The Koala Component
Model for Consumer Electronics,” IEEE Trans. Com-
puters, vol. 33, no. 3, 2000, pp. 78–85.

36. M. Shaw, “The Coming-of-Age of Software Architec-
ture Research,” Proc. 23rd Int’l Conf. Software Eng.
(ICSE 01), IEEE CS Press, 2001, pp. 656–664a.

37. B. Selic, “The Pragmatics of Model-Driven Develop-
ment,” IEEE Software, vol. 20, no. 5, 2004, pp. 19–25.

38. R. Soley, Model-Driven Architecture, Object Manage-
ment Group, 2000.

39. J. Bosch, “Software Architecture: The Next Step,” Proc.
1st European Workshop Software Architecture (EWSA
04), Springer, 2004, pp. 194–199.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

3 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

SAS TECHNICAL LEAD CONSULTANT-
Develop custom SAS-based analytical soft-
ware solutions for life sciences and finan-
cial industry clients including mainframe-
to-PC conversions, conversion of legacy
applications to latest version of SAS soft-
ware, data warehouse development,
intranet solutions, and clinical data analy-
sis reports for FDA submissions. Must have
BS in Computer Science or related and 6
yrs. exp. in job offered OR MS in
Computer Science or related and 4 yrs.
exp. in job offered OR 8 yrs. exp. in job
offered and authorization to work in the
U.S. on a permanent basis. 40-hrs/wk, M-
F. Qualified applicants send resumes to:
Pinnacle Solutions, Inc. Attn: C. Wehrley,
120 E. Market Street, Ste. 900,
Indianapolis, IN 46204. References veri-
fied.

Classified Advertising

SUBMISSION DETAILS: Rates are
$110.00 per column inch ($125 mini-
mum). Eight lines per column inch and
average five typeset words per line.
Send copy at least one month prior to
publication date to: Marian Anderson,
Classified Advertising, IEEE Software,
10662 Los Vaqueros Circle, PO Box
3014, Los Alamitos, CA 90720-1314;
(714) 821-8380; fax (714) 821-4010.
Email: manderson@computer.org.

