
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 9

on architecture

E
very interesting software-intensive sys-
tem has an architecture. While some of
these architectures are intentional, most
appear to be accidental.

Since accidental is an emotionally ex-
plosive word, let’s tease apart the ele-

ments of my statement. First, the terms inter-
esting and software-intensive. For my purposes,
an interesting system is one that has significant

economic value; a software-
intensive system is one that in-
volves some degree of soft-
ware/hardware interplay, such
as that found not only in large
distributed systems but also in
smaller embedded systems or
even captive uniprocessor or
multicore systems. Second,
the term architecture itself.
Here, I’m not so much con-

cerned about the definition (the terminology in
IEEE Standard 1471 is quite sufficient for my
needs) but rather the naming of particular ar-
chitectural patterns. I’ll say more about this
later, but the fact that we cannot yet meaning-
fully enumerate a comprehensive set of archi-
tectural patterns or styles across domains is a
gap in our understanding of software archi-
tecture. (Filling that gap is one desired out-
come of my Handbook project.) Finally, the
terms intentional and accidental. An intentional
architecture is explicitly identified and then im-
plemented; an accidental architecture emerges
from the multitude of individual design deci-

sions that occur during development, only after
which can we name that architecture.

Philippe Kruchten has observed that “the
life of a software architect is a long and rapid
succession of suboptimal design decisions
taken partly in the dark.” The journey be-
tween vision and ultimate executable system
is complex. For every interesting software-
intensive system, that path is marked by myr-
iad decisions, some large and some small,
some of which advance progress while others
represent vestigial dead ends or trigger points
for scrap and rework. As Philippe also ob-
serves, the architecture of classical systems
comes primarily from theft, whereas the archi-
tecture of unprecedented systems comes
largely from intuition carried out in the con-
text of a controlled exploratory process. The
fact that this is so for software-intensive sys-
tems shouldn’t come as a surprise, for as Henry
Petroski explains in his book To Engineer Is
Human (Vintage, 1992), all sound engineering
disciplines advance by building on past suc-
cesses while simultaneously mitigating causes
of observable failure.

Thus, having an accidental architecture is
not necessarily a bad thing, as long as

■ the decisions that make up that architecture
are made manifest and

■ the essential ones are made visible as soon
as they are instituted and then are allowed
to remain visible throughout the meaning-
ful life of that system.

The Accidental
Architecture

Grady Booch

E d i t o r : G r a d y B o o c h ■ I B M ■ a r c h i t e c t u r e @ b o o c h . c o m

1 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

ON ARCHITECTURE

Insofar as we can then name these ar-
chitectures after they’re formed, we can
use these names and their associated
semantics to communicate decisions
using a common language, just as we
can do now with design patterns, and
perhaps even reuse these architectural
patterns in future systems. In other
words, by naming these accidental ar-
chitectures, we again raise the level of
abstraction by which we can describe
and reason about a system.

Architectural patterns
In her book The Grammar of Architec-

ture (Bulfinch, 2002), Emily Cole enumer-
ates a set of 18 distinct architectural
styles in civil engineering, ranging from
Babylonian to Grecian and Islamic to
Baroque, then on to Neoclassical and Pic-
turesque. Her set isn’t exactly complete or
of suitable granularity—one could argue
that Victorian, Craftsman, or even
Gehrian are equally valid styles—but the
fact that such things are even nameable
reflects that field’s maturity.

Gehrian? Well, therein lies a conun-
drum. The contemporary architect Frank
Gehry, just like Daniel Libeskind, I.M.
Pei, and many others, has a uniquely
identifiable style that we don’t quite
know how to classify and thus name. In-
deed, if you consider all the styles from
Cole’s book, you’ll realize we can name
them and distinguish one from another
only because of the distance of time,
having had the opportunity to reflect
back on numerous instances of specific
architectures and harvest their reoccur-
ring patterns. The problem of naming
software architectural patterns, there-
fore, is that we don’t have a similar
luxury of time or of as many identifi-
able reoccurring instances from which
to harvest.

As part of my software archeologi-
cal digs, I collect of lot of metadata, in-
cluding the history of the system under
study. In every case (taking into ac-
count that my work is self-selecting, for
I’m only studying successful systems),
I’ve uncovered a steady growth of archi-
tectural maturity within each domain.
This maturity is represented by what
evolutionists would call a punctuated
rhythm consisting of architectural dis-

covery, architectural stability, architec-
tural collapse, and then a repeated cycle
initiated by a harvesting of architectural
patterns that survived the collapse. In
other words, accidental architectures
emerge but then become intentional
only after they’ve proven themselves
through time.

Web-centric architectural
patterns

As an example, every contemporary
dot-com system I’ve studied—particu-
larly those that survived the near-death
experience of the late 1990s dot-bomb
era—have gone through several distinct
architectural periods, periods that track
the history of the Web itself. Many oth-
ers have documented the Web’s social,
economic, and business history (and
writing a history of something that’s
only 38 years old is disturbing enough,
given that I’m only 614 months old my-
self), so I’ve taken a stab at naming the
various technical generations of Web-
centric systems.

In the beginning, simple documents
dominated the Web. You can easily
identify sites of this era: they were styl-
istically distinct, consisting primarily of
modestly formatted text, basic hyper-
links, and a few crudely placed static
graphics, reflecting the simplicity of the
HTML standards of the time. In the
next identifiable movement, we saw the
rise of colorful clients. The first genera-
tion of Web-centric systems had suffi-

cient value that they attracted graphic
designers (many from the print media)
as well as serious developers. However,
many of the designers who could build
attractive sites couldn’t create good
software, and many of the developers
who could build great software couldn’t
create approachable user experiences. In
this generation, we saw the rise of eye
candy (and the now-amusing but the
then-ever-annoying HTML <blink>
tag) but also more precise formatting
and more engaging content.

It took a period of time coupled
with natural market forces, but best
practices began to emerge that yielded
a balance of power between the stake-
holders responsible for presentation and
infrastructure. This led to a third gener-
ation focused on simple scripting. The
rise of scripting languages began, and
thus Perl, PHP, and others started to
take hold. In this generation, we saw
the first great schism surrounding the
theology of dynamic HTML, with Mi-
crosoft’s Active Server Pages on one
side and, well, not Microsoft (includ-
ing Java Server Pages) on the other.

Consistent with this model of punc-
tuated equilibrium, the fourth genera-
tion was best identified by the rise of
middleware, which continued the previ-
ous schism (leading to Microsoft’s .NET
and the alternative products supporting
J2EE) and which represented the codifi-
cation of many of the mechanisms com-
monly found in such systems.

In the fifth generation, the focus of
innovation turned back again to the
client layer above this middleware.
With by-then-considerable experience
in scripting languages and with the still-
oscillating pendulum swinging between
pure Web thin clients and traditional
thick clients, the mark of this genera-
tion was the rise of simple frameworks
(such as Struts). These served to codify
best practices at the client layer, such as
reflected in the Model-View-Controller
pattern.

And here we are
In the sixth (and contemporary) gen-

eration, an interesting bifurcation has
taken place. On the edges of Web-centric
systems are considerable demand pull

Accidental
architectures emerge

but then become
intentional only

after they’ve proven
themselves

through time.

M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 1 1

ON ARCHITECTURE

and technology push toward rich clients,
so technologies such as Ajax have gained
traction. At the core of Web-centric sys-
tems, service-oriented architectures have
taken hold because they provide a solu-
tion to the problem of building systems
of systems. This is particularly true when
some (but not necessarily all) of those
systems are already wrapped up in the
collateral implications of their Webifica-
tion (namely, investment in the infra-
structure elements of security, universal
accessibility, and transparent location).

Were you to take a snapshot of an
interesting Web-centric system during
any one of these generations, you’d find
a distinctly unique architectural style at
play. Each generation was complex in
its time, but the technology available at
that time shaped the accidental archi-
tectures that emerged. Only now—in
reflection of that time—can we begin to
attempt to name and thus make inten-
tional these architectural patterns.

A final point I need to make is that,
depending on where you’re looking,
one person’s system is another’s subsys-
tem. Thus, you might see the use of in-
tentional architectures at some levels
(only because we know how to build
them and have built them before) but

then accidental on others (because we’re
striking out on new ground or are as-
sembling systems of systems in novel,
heretofore untried ways).

A ccidental architectures are not evil
things; indeed, they are inevitable in
the growth of systems. It’s only when

we begin to turn these accidental archi-

tectures into intentional ones that we
advance our understanding of software
architecture.

Grady Booch is an IBM Fellow. He’s one of the Unified
Modeling Language’s original authors. He also developed
the Booch method of software development, which he pre-
sents in Object Oriented Analysis and Design. Contact him at
architecture@booch.com.

www.computer.org/software

UPCOMING ISSUES:
Software Testing

Global Software Development
Software Engineering

Curriculum Development

VISIT US AT

