
Software Testing

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2006 SEOC - Lecture Note 17 2

What is Software Testing?

Software Testing is the design and 
implementation of a special kind of software 
system: one that exercises another 
software system with the intent of finding 
bugs.
Testing software typically involves:
• Executing software with inputs representative of 

actual operation conditions (or operational 
profiles)

• Comparing produced/expected outputs
• Comparing resulting/expected states
• Measuring execution characteristics (e.g., memory 

used, time consumed, etc.)



© 2004-2006 SEOC - Lecture Note 17 3

Terminology

Fault: an imperfection that may lead to a 
failure
• E.g., missing/incorrect code that may result in a 

failure
• Bug: another name for a fault in code

Error: where the system state is incorrect 
but may not have been observed

Failure: some failure to deliver the 
expected service that is observable to the 
user



© 2004-2006 SEOC - Lecture Note 17 4

A few more definitions
Test Case: set of inputs, execution conditions, and expected 
results developed for a particular objective
Test Suite: collection of test cases, typically related by a 
testing goal or an implementation dependency
Test Driver: class or utility program that applies test cases
Test harness: system of test drivers and other tools that 
support test execution
Test Strategy: algorithm or heuristic to create test cases 
from a representation, implementation, or a test model
Oracle: means to check the output from a program is correct 
for the given input
Stub: partial temporary implementation of a component 
(usually required for a component to operate)



© 2004-2006 SEOC - Lecture Note 17 5

A Software Testing Process

Testing process goals
Validation testing
• To demonstrate to the developer and the system customer that the

software meets its requirements;
• A successful test shows that the system operates as intended.

Defect testing
• To discover faults or defects in the software where its behavior is 

incorrect or not in conformance with its specification;
• A successful test is a test that makes the system perform 

incorrectly and so exposes a defect in the system.



© 2004-2006 SEOC - Lecture Note 17 6

Effectiveness vs. Efficiency

Test Effectiveness
• Relative ability of testing strategy to find bugs in 

the software

Test Efficiency
• Relative cost of finding a bug in the software 

under test



© 2004-2006 SEOC - Lecture Note 17 7

What is a successful test?

Pass
• Status of a completed test case whose actual 

results are the same as the expected results

No Pass
• Status of a completed software test case whose 

actual results differ from the expected ones
• “Successful” test (i.e., we want this to happen)



© 2004-2006 SEOC - Lecture Note 17 8

What software testing is not…

Model verification (e.g., by simulation)

Tool-based static code analysis

Human documentation/code scrutiny 
(inspection) 

Debugging:
• Testing is NOT debugging, and debugging is NOT 

testing



© 2004-2006 SEOC - Lecture Note 17 9

Software Testing Features

The scope of testing
• The different levels of the system that testing 

addresses 

Test techniques
• Some of the approaches to building and applying 

tests

Test management
• How we manage the testing process to maximize 

the effectiveness and efficiency of the process 
for a given product



© 2004-2006 SEOC - Lecture Note 17 10

Testing scope

“Testing in the small” (unit testing)
• Exercising the smallest executable units of the 

system

“Testing the build” (integration testing)
• Finding problems in the interaction between 

components

“Testing in the large” (system testing)
• Putting the entire system to test



© 2004-2006 SEOC - Lecture Note 17 11

Testing Categorization

Fault-directed testing
• Unit testing
• Integration testing

Conformance-directed testing
• System testing
• Acceptance testing



© 2004-2006 SEOC - Lecture Note 17 12

Testing “in the small”
Unit Testing
• Exercising the smallest 

individually executable code 
units

• It is a defect testing 
process.

• Component or unit testing is 
the process of testing 
individual components in 
isolation.

Objectives
• Finding faults
• Assure correct functional 

behaviour of units
Usually performed by 
programmers

Components may be:
• Individual functions or 

methods within an object;
• Object classes with several 

attributes and methods;
• Composite components with 

defined interfaces used to 
access their functionality.

Object Class Testing
• Complete test coverage of a 

class involves: Testing all 
operations associated with 
an object; Setting and 
interrogating all object 
attributes; Exercising the 
object in all possible states.

• Inheritance makes it more 
difficult to design object 
class tests as the 
information to be tested is 
not localised.



© 2004-2006 SEOC - Lecture Note 17 13

An Example of Object Class Testing
Need to define test 
cases for 
reportWeather, 
calibrate, test, startup 
and shutdown.
Using a state model, 
identify sequences of 
state transitions to be 
tested and the event 
sequences to cause 
these transitions
For example:
• Waiting -> Calibrating -> 

Testing -> Transmitting -> 
Waiting



© 2004-2006 SEOC - Lecture Note 17 14

Interface Testing
Objectives are to detect faults 
due to interface errors or 
invalid assumptions about 
interfaces.
Particularly important for 
object-oriented development as 
objects are defined by their 
interfaces.
Interface Types: Parameter 
interfaces (Data passed from 
one procedure to another), 
Shared memory interfaces 
(Block of memory is shared 
between procedures or 
functions), Procedural 
interfaces (Sub-system 
encapsulates a set of 
procedures to be called by other 
sub-systems), Message passing 
interfaces (Sub-systems 
request services from other 
sub-systems)

Interface Errors
Interface misuse. A calling 
component calls another 
component and makes an error in 
its use of its interface e.g. 
parameters in the wrong order.
Interface misunderstanding. A 
calling component embeds 
assumptions about the behaviour 
of the called component which 
are incorrect.
Timing errors. The called and 
the calling component operate at 
different speeds and out-of-
date information is accessed.



© 2004-2006 SEOC - Lecture Note 17 15

Testing the “build”

Integration Testing
• Exercising two or more units or components

Objectives
• Detect interface errors
• Assure the functionality of the combined units

Performed by programmers or testing group

Issues
• Strategy for combining units?
• Compatibility with third-party components (e.g., 

Commercial Of The Shelf – COTS)?
• Correctness of third-party components?



© 2004-2006 SEOC - Lecture Note 17 16

Integration Testing
Involves building a system 
from its components and 
testing it for problems that 
arise from component 
interactions.

Top-down integration
• Develop the skeleton of the 

system and populate it with 
components.

Bottom-up integration
• Integrate infrastructure 

components then add 
functional components.

To simplify error localisation, 
systems should be 
incrementally integrated.



© 2004-2006 SEOC - Lecture Note 17 17

Testing “in the large”: System

System Testing
• Exercising the functionality, performance, 

reliability, and security of the entire system

Objectives
• Find errors in the overall system behaviour
• Establish confidence in system functionality
• Validate non-functional system requirements

Usually performed by a separate testing 
group



© 2004-2006 SEOC - Lecture Note 17 18

Testing “in the large”: Accept

Acceptance Testing
• Operating the system in the user environment with 

standard user input scenario

Objectives
• Evaluate whether the system meets the customer 

criteria
• Determine whether the customer will accept the 

system

Usually performed by the end user



© 2004-2006 SEOC - Lecture Note 17 19

Testing “in the large”: Operation

Regression Testing
• Testing modified versions of a previously validated 

system

Objectives
• Assuring that changes to the system have not 

introduced new errors

Performed by the system itself or by a 
regression test group

Capture/Replay (CR) Tools



© 2004-2006 SEOC - Lecture Note 17 20

Test Generation Methods
Black-box testing
• No knowledge of the software structure
• Also called specification-based or 

functional testing
White-box testing
• Knowledge of the software structure and 

implementation
• White-box methods can be used for test 

generation and test adequacy analysis
• Usually used as adequacy criteria (after 

generation by a black-box method)
• Methods based on internal code structure: 

Statement, Branch, Path or Data-flow 
coverage

Fault-based testing
• Objective is to find faults in the software, 

e.g., Unit testing
Model-based testing
• Use of a data or behaviour model of the 

software, e.g., finite state machine
Random testing

Black-box Testing



© 2004-2006 SEOC - Lecture Note 17 21

Structural Testing
Statement Testing: requires that very statements in the 
program be executed
Branch Testing: seeks to ensure that every branch has been 
executed.
• Branch coverage can be checked by probes inserted at the points in 

the program that represent arcs from branch points in the 
flowgraph.

• This instrumentation suffices for statement coverage as well.
Expression Testing: requires that every expression assume a 
variety of valued during a test in such a way that no 
expression can be replaced by a simpler expression and still 
pass the test.
• Expression testing does require significant runtime support for the 

instrumentation.
Path Testing: data is selected to ensure that all paths of the 
program have been executed.
• In practice, path coverage is impossible to achieve



© 2004-2006 SEOC - Lecture Note 17 22

Issues with Structural Testing

Is code coverage effective at detecting 
faults?

How much coverage is enough?

Is one coverage criterion better than 
another?

Is coverage testing more effective that 
random test case selection?



© 2004-2006 SEOC - Lecture Note 17 23

Experimental Studies

Experiment: Black-box generation followed 
by white-box coverage-based testing

Results:
• High coverage alone does not guarantee fault 

detection
• Fault detection increases significantly as coverage 

goes above 95%
• No significant difference between branch and 

Data-flow (expression) coverage
• Both Branch and Data-flow coverage are 

significantly more effective that random test 
cases



© 2004-2006 SEOC - Lecture Note 17 24

Test Management
Concerns
• Attitude to testing
• Effective documentation and control of the whole test 

process
• Documentation of tests and control of the test codebase
• Independence of test activities
• Costing and estimation of test activities
• Termination: deciding when to stop
• Managing effective reuse
Activities
• Test Planning
• Test case generation – can involve massive amounts of data 

for some systems
• Test environment development
• Execution of tests
• Evaluating test results
• Problem reporting
• Defect tracking



From Use Cases to Test Cases



© 2004-2006 SEOC - Lecture Note 17 26

From Use Cases to Test cases

One of the greatest benefits of use cases is 
that they provide a set of assets that can 
be used to drive the testing process
Use cases can directly drive, or seed, the 
development of test cases
The scenarios of a use case create 
templates for individual test cases
Adding data values completes the test cases
Testing non-functional requirement 
completes the testing process



© 2004-2006 SEOC - Lecture Note 17 27

A (Black-box) Tester’s Viewpoint

What is the system supposed to do?

What are the things that can go wrong?

How can I create and record a set of 
testing scenarios?

How will I know when to stop testing?

Is there anything else the system is 
supposed to do?



© 2004-2006 SEOC - Lecture Note 17 28

From Use Cases to Test cases
A comprehensive set of use cases that documents 
an ordered sequence of events describing how the 
system interacts with the user and how it delivers 
its results to that user
A use case model that documents all the use cases 
for the system, as well as how they interact and 
what actors drive them
Within each use case, both a basic flow of events 
and a series of alternative flows that defines what 
the system does in various “what if” scenarios
Descriptions of pre-conditions and post-conditions
A supplementary specification that defines the 
non-function requirements of the system



© 2004-2006 SEOC - Lecture Note 17 29

Deriving Test Cases from Use Cases

1. Identify the use-case scenarios

2. For each scenario, identify one or more 
test cases

3. For each test case, identify the conditions 
that will cause it to execute

4. Complete the test case by adding data 
values



© 2004-2006 SEOC - Lecture Note 17 30

Managing Test Coverage

Select the most appropriate or critical use 
cases for the most thorough testing
• Often these use cases are primary user interfaces, 

are architecturally significant, or present a hazard 
or hardship of some kind to the user should a 
defect remain undiscovered

Chose each use case to test based on a 
balance between cost, risk, and necessity of 
verifying the use case

Determine the relative importance of your 
use cases by using priorities specific to your 
context



© 2004-2006 SEOC - Lecture Note 17 31

Black-box vs. White-box Testing
For every use case, there is a 
use case realization that 
represents how the system is 
designed to accomplish the 
use case

The use case itself lives in 
the requirements domain and 
simply specify necessary 
behaviour

The use-case realization lives 
inside the solution space and 
describes how the behaviour 
is accomplished by the 
system

Use Case

Requirements Domain

Use Case
realization

Solution Domain



© 2004-2006 SEOC - Lecture Note 17 32

An Example of Use Case-based Testing
Use cases can be a basis 
for deriving the tests 
for a system. They help 
identify operations to 
be tested and help 
design the required test 
cases.

From an associated 
sequence diagram, the 
inputs and outputs to be 
created for the tests 
can be identified.



© 2004-2006 SEOC - Lecture Note 17 33

Is a Use Case a Test Case?
NO
Test cases
• Test cases form the 

foundation on which to 
design and develop test 
procedures

• The “depth” of the testing 
activity is proportional to 
the number of test cases

• The scale of the test effort 
is proportional to the 
number of use cases

• Test design and 
development, and the 
resources needed, are 
largely governed by the 
required test cases

Use-case Scenarios
• A scenario, or an instance of 

a use case, is a use-case 
execution wherein a specific 
user executes the use case 
in a specific way



© 2004-2006 SEOC - Lecture Note 17 34

A Matrix for Testing Specific Scenarios

Test 
Case 
ID

Scenario 
/ 
Condition

Description Data 
Value 1 
/ 
Condition 
1

Data 
Value 2 
/ 
Condition 
2 

… Expected 
Result

Actual 
Result

1 Scenario 

1

2 Scenario 
2

3 Scenario 
2



© 2004-2006 SEOC - Lecture Note 17 35

Reading/Activity

Please read 
• the SWEBOK’s chapter on Software Testing for an 

overview on Software Testing
• James A. Whittaker. What is Software Testing? 

And Why is it so Hard?. In IEEE Software, 
January/February 2000, pp. 70-79.

• Hutchins et al., Experiments on the Effectiveness 
of Dataflow- and Controlflow-Based Test 
Adequacy Criteria. ICST, May 1994.

• P.C. Jorgensen, C. Erickson. Object Oriented 
Integration Testing. Communications of the ACM, 
September 1994.



© 2004-2006 SEOC - Lecture Note 17 36

Summary

Testing is a critical part of the development 
of any system

Testing can be carried out at a number of 
levels and is planned as an integral part of 
the development process

There is a wide range of approaches to test 
case generation and evolution of the 
adequacy of a test suite

Test needs to be managed effectively if it is 
to be efficient


	Software Testing
	What is Software Testing?
	Terminology
	A few more definitions
	A Software Testing Process
	Effectiveness vs. Efficiency
	What is a successful test?
	What software testing is not…
	Software Testing Features
	Testing scope
	Testing Categorization
	Testing “in the small”
	An Example of Object Class Testing
	Interface Testing
	Testing the “build”
	Integration Testing
	Testing “in the large”: System
	Testing “in the large”: Accept
	Testing “in the large”: Operation
	Test Generation Methods
	Structural Testing
	Issues with Structural Testing
	Experimental Studies
	Test Management
	From Use Cases to Test Cases
	From Use Cases to Test cases
	A (Black-box) Tester’s Viewpoint
	From Use Cases to Test cases
	Deriving Test Cases from Use Cases
	Managing Test Coverage
	Black-box vs. White-box Testing
	An Example of Use Case-based Testing
	Is a Use Case a Test Case?
	A Matrix for Testing Specific Scenarios
	Reading/Activity
	Summary

