
Package Diagrams

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2006 SEOC - Lecture Note 08 2

Rationale
Provide a way to group
related UML elements 
and to scope their 
names
Provide a way to 
visualize dependencies
between parts of your 
system
• Vulnerable to changes (in 

other packages)
Provide support for 
analysis
Determine compilation 
order

Package design needs to 
balance diverse needs
• Easier to build and test
• Better tracking and 

property transparency
• Working at a stable 

overview without the 
noise of low-level details

• Less conflict between 
distributed teams

• Easy refactoring and 
extension



© 2004-2006 SEOC - Lecture Note 08 3

Representation of Packages
Packages contain different 
elements (packages too)
A UML package establishes a 
namespace
• To specify the context of a 

UML, you provide the fully-
scoped name

• packageName::className
• In Java, a fully-scoped name 

corresponds to specify the 
Java package

It is possible to specify 
visibility for owned and 
imported elements
• public or private
• No elements – no 

assumptions about the 
package’s content



© 2004-2006 SEOC - Lecture Note 08 4

Element Visibility

Elements with public visibility are accessible 
outside the package

Elements with private visibility are available 
only to other elements inside the package

In Java, public and private visibilities 
correspond to a class being public or private 
to a Java package

If the public keyword is absent, then the 
class is private to the package



© 2004-2006 SEOC - Lecture Note 08 5

Importing and Accessing Packages
<<import>>: Elements 
of imported packages 
are available without 
qualification in the 
importing package
• public visibility
• private visibility
• Import specific elements, 

rather than the whole 
package

<<access>>:Accessing 
packages whereas gives 
private visibility to the 
imported elements

Target Packages



© 2004-2006 SEOC - Lecture Note 08 6

Merging Packages
Creates relationships between classes of the same 
name
Merge is a directed relationship
Rationale: the evolution from UML 1.x to UML 2.0 -
extending a base concept of elements without 
renaming 
Some Rules for package merge
• Private members are not merged
• Merging classes are generalized to corresponding merged 

ones
• Maintain package scope for reference to classes
• Classes outside the intersection of packages are unchanged
• Subpackages are added, if they don’t exist
• Merge extends to subpachages with the same names
• Merge acquires imported elements



© 2004-2006 SEOC - Lecture Note 08 7

Package Dependencies
Structuring a Project with 
Packages
Packages group UML 
elements and organize a 
logical system during design 
and implementation
Manage Dependencies
• Directed dependency graphs
• Avoid cyclical package 

dependencies
• Organize and allocate 

project work to different 
teams - Different groups 
can work on different 
packages without 
destabilizing each other



© 2004-2006 SEOC - Lecture Note 08 8

Use Case Packages
Using packages to 
organize use cases
Organize the functional 
behavior of a system
Highlight which actors 
interact with which 
portions of the system


	Package Diagrams
	Rationale
	Representation of Packages
	Element Visibility
	Importing and Accessing Packages
	Merging Packages
	Package Dependencies
	Use Case Packages

