Package Diagrams

Massimo Felici
Room 1402, JCMB, KB
0131 650 5899

mfelici@inf.ed.ac.uk



Rationale

= Provide a way to group = Package design needs to

related UML elements balance diverse needs
and to scope their + Easier to build and test
names » Beftter tracking and
: roperty transparenc
) PFOWd.e a way o . . |\:J/\/oEkingzla’r a sfable ’
visualize dependencies overview without the
between parts of your noise of low-level details
system + Less conflict between
* Vulnerable to changes (in distributed teams
other packages) - Easy rgfac’roring and
= Provide support for extension
analysis
= Determine compilation
order

© 2004-2006 SEOC - Lecture Note 08



Representation of Packages

This i a pachage

thistsaAClass

anotherClass

Tratfic Lights

© 2004-2006

SEOC - Lecture Note 08

Packages contain different
elements (packages to0)

A UML package establishes a
namespace

To specify the context o a
L, you'provide the fully-
scoped name

packageName : :className
In Java, a fully-scoped name
corresp on ’ro specnfy’r e
Java pac age
It is possible to specify
visibility for owned and
imported elements

public or private

No elements - no
assumptions about the
package's content



Element Visibility

Elements with public visibility are accessible
outside the package

Elements with private visibility are available
only o other elements inside the package

In Java, public and private visibilities
correspond to a class being public or private
to a Java package

If the public keyword is absent, then the
class is private to the package

© 2004-2006 SEOC - Lecture Note 08 4



Importing and Accessing Packages

= <<import>>: Elements
of imported packages Target Packages
are available without
qualification in the

importing package s .

- public visibility
- private visibility

- Import specific elements, L
rather than the whole g pre—
package

= <<access>>.Accessing

packages whereas gives
private visibility to the
imported elements

© 2004-2006 SEOC - Lecture Note 08



Merging Packages

= Creates relationships between classes of the same
name

= Merge is a directed relationship

= Rationale: the evolution from UML 1.x to UML 2.0 -
extending a base concept of elements without
renaming

= Some Rules for package merge

Private members are not merged

. c/;/}\aerjsging classes are generalized to corresponding merged

* Maintain package scope for reference to classes

+ Classes outside the intersection of packages are unchanged
+ Subpackages are added, if they don't exist

* Merge extends to subpachages with the same names

* Merge acquires imported elements

© 2004-2006 SEOC - Lecture Note 08



Package Dependencies

= Structuring a Project with
Packages

= Packages group UML
elements and organize a
logical system during design

and implementation

" Manage Dependencies
Directed dependency graphs %
Avoid cyclical package N
dependencies ‘
Organize and allocate
project work to different
teams - Different groups
can work on different
packages without
destabilizing each other

© 2004-2006 SEOC - Lecture Note 08




Use Case Packages

= Using packages to

organize use cases

atudent Package

= Organize the functional i

behavior of a system

Student

= Highlight which actors

Teaching Package

interact with which
portions of the system i_

Lecturer

Administration Package

T

Administrator

© 2004-2006 SEOC - Lecture Note 08




	Package Diagrams
	Rationale
	Representation of Packages
	Element Visibility
	Importing and Accessing Packages
	Merging Packages
	Package Dependencies
	Use Case Packages

