
6 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

sidebar for more information.) Analysts can
recall prior specifications, adapt them to the
current problem, and consolidate the reusable
parts to create new requirements specifica-
tions.2 However, requirements reuse lacks tool
support. In his survey paper, Axel van Lam-
sweerde says, “Surprisingly enough, tech-
niques for retrieving, adapting, and consoli-
dating reusable requirements have received
relatively little attention in comparison with
all the work on software reuse. … The work

in this area has not made sufficient progress to
date to determine whether such approaches
may be practical and may scale up.”3

Our REUSER project seeks to address this tool
gap by seamlessly assisting analysts as they reuse
UML (Unified Modeling Language) artifacts. In
particular, it automates artifact retrieval.

Finding the best match
Finding the best match is the first, and most

important, step in reuse. Given an initial arti-
fact, art, a matching function, �, determines the
best match, m, from a library of designs, L: m =
�(art, L). It’s difficult to define a good matching
function—especially for use cases, with their
informal, irregular textual descriptions. In prac-
tice, a use case consists of the name, a short
description, and a narrative of events among ob-
jects. Finding a good use case based on an ini-

feature
Finding Reusable UML
Sequence Diagrams
Automatically

R
euse in software-intensive systems is ubiquitous in practice. In gen-
eral, software reuse is defined as “the process of creating software
systems from existing software.”1 Software reuse does more than
improve productivity in software development; it also increases the

quality of the resulting software systems because it uses validated artifacts.
Requirements engineers benefit from reuse, even though it’s a manual

process relying on human recall in most situations. (See the “Artifact Reuse”

software reuse

Software analysts create many artifacts, and until recently, these
have been cumbersome to reuse. REUSER is a CASE tool that lets
analysts automatically retrieve related UML artifacts for reuse. Its
underlying graph-based concept-clustering technique performs well
in structured domains.

William N. Robinson and Han G. Woo, Georgia State University

tial, incomplete use case typically means com-
paring use case narratives. Unfortunately, both
humans and machines are rather poor at such
natural-language comparisons. Consequently,
matching functions considers two types of com-
monalities: concepts and relationships.

Concept matching
This is the most common way to find the best

match. For example, the Crews (Cooperative
Requirements Engineering With Scenarios) proj-
ect structures use case scenarios using a facet-
based classification system—the library designer
predefines the facets.4 Once properly annotated,
an analyst searches the scenario library, selects
an appropriate scenario, and adapts it for the
current specification task. In a similar approach,
an analyst calculates syntactic similarity be-
tween use case scenarios. Thomas Alspaugh and
colleagues provide a weighted similarity metric

using UML use case actors and extra-UML
properties of goal, purpose, and viewpoint.5 An
analyst can adjust the attribute weights to suit
the comparisons (for example, detecting com-
monality among scenarios). Maurits Blok and
Jacob Cybulski focus on the event flows of a use
case sequence diagram.6 Using the WordNet lex-
icon to classify an event, their tool represents a
use case as a vector of event flow descriptors. It
calculates the similarity of the use case vectors
using an information-retrieval technique. Moto-
shi Saeki7 uses the semantics of UML’s «ex-
tends» and «uses» relationships to find simi-
lar or common parts of use cases.

Relationship matching
These techniques extend the comparisons

among the attributed concepts to include con-
cept relationships. These approaches focus on
the graphs’ structure defined by concepts (as

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 6 1

Software analysts create many artifacts and often recall
prior work as they recreate new artifacts. For example, when
presented with an e-commerce problem, they create yet an-
other e-commerce solution. This process needs to improve.

Design by patterns is a popular approach in which analysts
create designs by instantiating predefined patterns from books
or from computer-aided software engineering tools. But ana-
lysts find their own personalized designs most useful, and these
are not generalized into patterns. Rather than instantiate a pat-
tern, analysts copy and adapt their existing artifacts. Until re-
cently, such artifact reuse has been cumbersome.

To demonstrate, let’s
walk through the process
of defining an online
sales system. Many ana-
lysts begin a sequence
diagram similar to that
shown in Figure A. The
illustrated fragment is a
common sequence dia-
gram, but this is just the
beginning. Analysts will
also typically develop
use case text, a class dia-
gram, and a more com-
plex sequence diagram.
Having developed such
systems before, many an-
alysts retrieve related UML
artifacts and copy and

edit them as necessary. This manual strategy works well for a small
set of predefined designs. However, the strategy breaks down
when the design library contains many designs produced by dif-
ferent analysts. It becomes difficult and time-consuming to know
the library’s scope as well as to find the best-matching artifacts.

Some automated design retrieval approaches exist. How-
ever, they require specific design annotations, which most ana-
lysts are unwilling to add. Our REUSER tool lets analysts automat-
ically retrieve related artifacts for reuse. Unlike other reuse
approaches, this approach relies on the artifact structure and
less on extra-artifact annotations or name similarity.

Artifact Reuse

: Customer

1: New Sale
2: createSale()

3: create()

 : CreateSale : CreateSaleController

4: addItem(SKU: String)

 : SaleBroker

Figure A. An initial sequence diagram used to query a design library.

vertices) and relationships (as edges). The re-
sulting similarity calculations are not summa-
tions across concept comparisons. Rather, we
calculate whole graph similarities—for exam-
ple, totaling the number of vertex or edge dif-
ferences. The ReqColl (Requirements Collec-
tor) project represents requirements as a
conceptual graph in which graph similarities
define requirement similarity.8 Others use this
same basic approach, including TARA (Tool
Assisted Requirements Analysis),9 IRA (Intelli-
gent Reuse Advisor),10 and KAOS (knowledge
acquisition in automated specification of soft-
ware).2 The lauded Programmers Apprentice
project also uses graph matching; however, it
relies mostly on common programming con-
structs.11 In contrast, today’s reuse projects in-
creasingly rely on extra annotations to support
their matching algorithms. For example, GBRAM

(Goal-Based Requirements Analysis Method)
requires use cases to include goal and purpose
annotations.5 Consequently, this limits reuse to
artifacts that include such annotations.

Relationship matching can be effective,
even without extra annotations. In many do-
mains, artifacts have regular structures that
have similar uses. Molecular biology, image
analysis, computer-aided design, and Web
pages include common structures amenable to

graph-based concept-learning and clustering
techniques.12 For example, given a partial
computer circuit’s graph representation, struc-
ture matching can find similar completed cir-
cuits from a library.12 This approach can espe-
cially benefit analysts, as they often loath
extra annotations because their value isn’t ob-
served until some future reuse request, which
might never arise. So, a matching method that
works on standard artifacts is a boon: analysts
can reuse their own artifact libraries as well as
any other libraries they’d like to access. More-
over, the approach works with the structure of
both object-level design and class-level re-
quirements scenarios.

You can apply relationship matching to
UML. To find a reusable artifact, a tool calcu-
lates match scores based on the designs’ struc-
tures, represented as graphs. Our research
shows this approach works well for com-
monly structured UML models.

Reuse by structural relationships
You can apply our reuse by structural rela-

tionships approach in the following manner:

1. An analyst defines or selects an artifact
library.

2. The tool calculates structure scores for the
artifacts in the library.

3. To query the library, an analyst gives the
tool a partially completed structure. (The
tool calculates the structure score for the
partial structure, searches the artifact li-
brary, and returns the n best matches.)

4. The analyst adapts the retrieved artifact to
the current problem context.

This reuse approach applies to any UML arti-
fact, including UML extensions such as stereo-
types. To demonstrate the approach, we defined
the REUSER tool. It’s implemented as a Rational
Rose add-in (including 2000–2003 versions);
however, REUSER can work with any UML tool
provided that you can encode the UML struc-
tures as directed graphs.

UML structures
REUSER assists the reuse of UML artifacts,

including use cases, class diagrams, and se-
quence diagrams. In this article, we focus on
sequence diagram reuse. Figure A (in the side-
bar), for example, shows a partially completed
sequence diagram passed to the tool. Figure 1a

6 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 1. (a) The best-
matching sequence
diagram for the query
shown in Figure A.
(b) Matching sequence
diagrams for another,
unrelated query.

(a)

(b)

illustrates the REUSER tool-finding matches for
Figure A’s query. An analyst can browse the
list of the best matches and directly open each
artifact from the list. The selected match must
then be adapted to satisfy the current prob-
lem. The figure shows sequence diagrams dis-
played as a text string of their objects (pre-
fixed with INS, denoting instance) and
messages (prefixed with MSG). Matched arti-
facts are shown as indented below their initi-
ating query. Figure 1b illustrates that REUSER

can find multiple artifacts for a single query.
Figure 2 shows that you can reuse artifacts

using UML extensions. REUSER automatically
analyzes UML extensions. Figure 2a shows an
extended use case diagram. In the diagram, the
Administrator is a UML actor with the Rational
Unified Process stereotype of business worker;
similarly, the Update User use case makes use
of a RUP stereotype. Figure 2a also shows two
goals that the use case supports: Update User
Info and Maintain User Info. These are dis-
played with a user-defined stereotype.

Figure 2b shows a simple sequence diagram
for the use case. The Authenticated User ob-
ject in the sequence diagram is an instance of
a subclass of the Administrator class from the
use case diagram. The two diagrams are inter-
related and represent an initial use case sketch.
Together, they form an artifact fragment,
which is used to query the artifact library.

While viewing Figure 2’s use case diagram,
an analyst can ask REUSER to find reusable use
cases. The tool will use both of Figure 2’s
structures to find matching use cases. Con-
versely, if the analyst begins with the sequence
diagram, REUSER will return related sequence
diagrams—again, based on both structures. In

general, an analyst can select a subset of re-
lated artifacts, and REUSER will return the best-
matching artifacts based on their structural
correspondence.

Automated encoding
Rather than analyze the UML artifacts di-

rectly, REUSER analyzes a directed graph repre-
sentation. REUSER translates UML artifacts into
its internal representation by translating UML
metamodel elements into a directed graph. By
translating metamodel types into vertex types,
the approach applies to all UML versions, in-
cluding version 2.0 (see www.omg.org). UML
metamodel associations become edges in the in-
ternal graph, while all other UML metamodel
elements become vertices. Using vertex prefixes
maintains as part of the translation UML meta-
model element types—including UML exten-
sions such as stereotypes. This results in a UML
artifact’s minimal graph representation.

Consider a UML artifact. Classes, objects,
messages, stereotypes, and so on are encoded
as vertices; UML associations and links be-
come edges. A class instance, for example, be-
comes a vertex prefixed with INS, and a class
is prefixed with CLS. A message vertex, pre-
fixed with MSG, is located between its sending-
object and receiving-object vertices. Edges rep-
resent UML metamodel associations, including

■ A link between a sending object and a
message

■ A link between a message and a receiving
object

■ The instantiation relationship between an
object in a sequence diagram and a class in
a class model

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 6 3

Goal: Maintain User
info

(from use cases)(a) (b)

: AuthenticatedUser : UpdateUser

1: select(User)

2: updateUser(User)

info
(from use cases)

Goal: Update User

Administrator
(from user)

Update User
(from use cases)

Figure 2. A UML (a) use
case and goal structure
and (b) sequence
diagram.

Figure 3 shows how REUSER encodes ob-
jects in a UML model as vertices and edges.
The vertices have prefixes for classes (CLS)
and their attributes (ATR), methods (MTH), as-
sociations (ASC), and stereotypes (STR). Class
instances are prefixed with INS, and mes-
sages among them are prefixed with MSG.
The edges support UML metamodel re-
lationships (for example, Stereotype,

Method, Association, Inheritance).
REUSER similarly encodes UML 2.0 meta-
model elements such as sequence diagram
reuse references and alternatives (for exam-
ple, REF@A_Ref, ALT@Seq_#11).

Automated matching
REUSER employs the SUBDUE algorithm to

find matches for a given query graph, and it
compares labeled directed graphs.12 To form a
match between two graphs, at least one node
label must match. In UML, this typically be-

gins with a matching stereotype name and is
refined with matching names for some use
cases, classes, or objects. A label synonym list,
provided by the analyst, permits equivalence
between different labels. As Figure 2 shows,
the matches don’t need isomorphic structures.
In fact, close matches are most helpful because
they provide new substructures that you can
reuse. The algorithm is polynomial; however,
the worst-case behavior is often avoided by
applying structure-limiting constraints to the
search.

The search algorithm finds “interesting” and
repetitive substructures in graphs. It replaces
each repeating substructure with a pointer to its
minimal substructure, thereby compressing the
graph. Repeating this process results in a mini-
mal classification lattice in which lower-level
concepts are included in the higher-level con-
cepts. Inexact matching lets you substitute par-
tially matching substructures. A threshold de-

6 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

STR@
business entity

: AuthenticatedUser : UpdateItemSpecController : ItemSpecification

updateItemSpec(ItemSpecification)
update()

(a)

(b)

INS@
AuthenticatedUser

INS@
UpdateItemSpec

Controller

INS@
ItemSpecification

MSG@
updateItemSpec

MSG@
update

CLS@
AuthenticatedUser

CLS@
UpdateItemSpec
Controller

CLS@
ItemSpecification

SendingObject
SendingObjectReceivingObject

ReceivingObject

Instantiated InstantiatedInstantiated

STR@
business actor

STR@
controlStereotype Stereotype Stereotype

Figure 3. (a) A
sequence diagram in a
(b) REUSER graph format.

termines when two structures are similar
enough to match. The analyst sets the threshold
parameter, which ranges from 0 to 1, where 0
finds an exact match. The threshold must be
less than the transformation cost/structure
size, where transformation cost is the
number of graph transformations required to
make the structures isomorphic.

Given an artifact fragment as a query, the
search algorithm can find similar artifacts by

■ Classifying the artifact library into a con-
cept lattice

■ Comparing an input artifact query against
the concept lattice

■ Retrieving the n closest matching artifacts

Figure 4 shows SUBDUE’s classification algo-
rithm. Its beam search strategy searches for
structures that best match the input structure.
To classify an artifact library, a graph’s
uniquely labeled vertex initializes the search
queue. Classification occurs through a sub-
structure search. To expand the search, SUBDUE

extends each vertex, S ∈ Q, by including its ad-
jacent edges and associated vertex. A compres-
sion method determines a match. It replaces all
instances of a classified structure observed in
the input structure with a single vertex; an ex-
act match compresses the input graph to one
vertex. The more the algorithm compresses the
input structure, the better the match—accord-
ing to the Minimum Description Length prin-
ciple.12 You can limit the search by breadth,
Beam, and number of expansions, Limit.

You can also use the classification algo-

rithm to find matching artifacts. Rather than
starting with an arbitrary vertex, search begins
with the query structure. This biases the algo-
rithm to expand structures that resemble the
query structure and results in a list of struc-
tures that best match the query structure.

UML is particularly amenable to relation-
ship matching because of its syntax, meta-
model-supported extensions, and commonly
applied idioms. For example, a Web-based
UML model often includes Web-stereotyped
definitions in common class and interaction
patterns. As the simple model in Figure 4
shows, its graph structure of 16 typed vertices
and 15 typed edges most resembles functions
involving actor-interface-controller idioms.
Through stereotyped patterns, analysts are ef-
fectively modeling with domain-specific lan-
guages in which similar structures have similar
functions. Conversely, relationship matching
is less likely to succeed when the artifacts have
varied functions with few structural variations,
and they are not segmented by their struc-
tures, such as sublanguages or idioms.

Evaluation
In this section, we evaluate the structural

relationship reuse approach’s effectiveness by
means of various methods and summarize the
results.

Retrieval case study
We conducted a case study, relying on an

artifact library comprising 308 classes and 85
use cases in domains similar to order process-
ing. We didn’t use synonym lists because we

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 6 5

Figure 4. SUBDUE’s
classification
algorithm.12

SSuubbdduuee (graph G, int Beam, int Limit)
queue Q = { v | v has a unique label in G }
bestSub = first substructure in Q
rreeppeeaatt

newQ = {}
ffoorr eeaacchh S ∈ Q

newSubs = S extended by an adjacent edge from G in all
possible ways

newQ = newQ » newSubs
Limit = Limit - 1

evaluate substructures in newQ by compression of G
Q = first Beam substructures in newQ in decreasing order

of value
iiff best substructure in Q better than bestSub
tthheenn bestSub = first substructure in Q

uunnttiill Q is empty or Limit ≤ 0
rreettuurrnn bestSub

6 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

had sufficient matches rooted in the stereotype
names and in some common class names. In
the study, we presented partially completed
use case designs to REUSER. A test set of 27
classes and seven partial sale-processing use
cases were constructed as queries. For exam-
ple, the sequence diagrams of Figures A and 3
were queries. To test REUSER, we requested
matches for each of the seven partially com-
pleted sequence diagrams.

Table 1 summarizes the retrieval results for
the two use cases: Update User (Figure 3) and
Create Sale (Figure A). For the Create Sale
query, REUSER found the best match sequence
diagram for the Create Order use case at a 0.5
threshold. The query and the retrieved se-
quence diagrams share a similar structure, al-
though the object and message names differ.

For the Update User query, REUSER discov-
ered exact matches from two different versions
of the Update User sequence diagram at a 0.3
threshold. The threshold 0.4 to 0.5 matching
also discovered the same structure, yet suggested
a broader range of nine similar cases. For exam-
ple, the match found a similar sequence diagram
that instantiates both the Update Item and Up-
date User use cases. Overall, REUSER appears to
retrieve similar sequence diagrams when pre-
sented with partial-sequence diagrams.

The preliminary case study’s results suggest
that REUSER effectively and efficiently finds
good matches—for simple and complicated
queries. However, to rule out author bias in
our evaluation, we impaneled experts.

Expert panel
Five experts performed experimental tasks

with REUSER. The experimental tasks consist of

completing two partial sequence diagrams,
one complicated and the other simple.

We selected the experts from faculty mem-
bers in a US information systems department.
They had on average 36.7 months of system
analysis and design experience. They identified
themselves as very knowledgeable about use
cases (averaging 6.25 out of 7), sequence dia-
grams (5.25 out of 7), and the Rose case tool
(5.75 out of 7).

Each expert created good sequence dia-
grams using REUSER. They reported that it took
21 minutes to complete a complex sequence
diagram and seven minutes for a simple se-
quence diagram.

The experts confirmed our hypothesized be-
lief that using REUSER affects quality and time
efficiency for scenario authoring. Each expert
quickly identified similar sequence diagrams
that suited the experimental tasks. Addition-
ally, each question for perceived usefulness and
intention to use received high scores in a seven-
point Likert scale (means ≥ 6). These results
suggest that REUSER’s approach is effective and
that practitioners might adopt it. However, we
can’t draw any strong conclusions from the ex-
pert panel results because of the small sample
size and lack of a comparison group.

Lab experimentations
We performed lab experiments to further

validate the research. For independent vari-
ables, we employed a 3 × 2 factorial design
with repeated measure (within subject). The
three experimental groups included the control
group, with no tool support or design library;
group A, with a design library; and group B,
with tool support and a design library. We gave
each group two tasks of varied complexity.

Analysis of the preliminary experimental
results indicates that the experimental groups
performed as expected: group B was better
than group A, which was better than the con-
trol group. Thus, REUSER appears to offer good
support for retrieving reusable design artifacts.

O ur results show that REUSER’s struc-
tural relationship approach works.
Functionally, it retrieves related, rea-

sonably reusable artifacts. Additionally, ana-
lysts seem to accept the simple approach:
while viewing a partially constructed artifact,
you can simply ask the tool to find related ar-

Table 1
Retrieved similar substructures for a partial query

Threshold Query

Create Sale Update User

0.1 None None
0.2
0.3 2 instances from Update User*
0.4 9 instances:
0.5 1 instance from Create Order* 2 from Update Item

4 from Update Order
1 from Create User
2 from Update User*

* indicates best match

tifacts. The underlying structure-based classi-
fication approach has repeatedly performed
well in structured domains.12

However, with its polynomial-time algo-
rithm, REUSER doesn’t perform well with large
query structures. In such cases, analysts can
obtain good results by reducing the query
size—for example, by leaving out a final sub-
sequence from a sequence diagram. Expert an-
alysts can obtain even better results by modi-
fying the parameters to the underlying SUBDUE

algorithm, such as search breadth, limit, and
target structure size.12

Other approaches to reuse suffer similar, or
worse, problems of scale. All approaches de-
fine a similarity metric; however, most often
the approaches only use the metrics to group
artifacts. Fewer reuse approaches use their
metrics to define an efficient concept lattice.
Moreover, most approaches rely on extra-arti-
fact annotations to guide matching. A library
concept lattice constructed from a library-
specific metric might be an efficient approach.
However, few organizations will pay for such
customization, and few analysts are willing to
work with the extra-artifact annotations.

Although REUSER’s approach works, we see
opportunities for future improvements such as

■ Parameter and input tuning
■ Weighted structure matching
■ Library lattice visualization
■ Pattern extraction

You can optimize query parameter values, such
as match threshold, for a given library and pat-
terns of query usage; you can automatically de-
rive such values through sensitivity analysis.

Although REUSER supports dynamic cus-
tomized queries, it doesn’t support weighting
among the criteria. To define a custom query, an
analyst can include “custom” elements in the
query structure; similar library structures will
match. However, an analyst might deem certain
elements or associations central to the query. Fu-
ture work will support weighted query graphs.

We based REUSER’s automatic classification
on structural design commonalities. Thus, you
can mine patterns from the library lattice. You
might consider the more abstract and common
patterns as empirical design patterns. Com-
paring such empirical patterns with the many
descriptive patterns currently espoused could
produce interesting results. In the meantime,

analysts can improve their process’s quality
and efficiency by applying REUSER’s structural
relationship retrieval approach.

References
1. W. Krueger, “Software Reuse,” ACM Computing Sur-

veys, vol. 24, no. 2, 1992, pp. 131–183.
2. P. Massonet and A. van Lamsweerde, “Analogical

Reuse of Requirements Frameworks,” Proc. 3rd Int’l
Symp. Requirements Eng. (RE 97), IEEE CS Press,
1997, pp. 26–37.

3. A. van Lamsweerde, “Requirements Eng. in the Year 00:
A Research Perspective,” Proc. 22nd Int’l Conf. Soft-
ware Eng. (ICSE 2000), IEEE CS Press, 2000, pp. 5–19.

4. C. Rolland et al., “A Proposal for a Scenario Classifica-
tion Framework,” Requirements Eng., vol. 3, no. 1,
1998, pp. 23–47.

5. T. Alspaugh et al., “An Integrated Scenario Management
Strategy,” Proc. IEEE 4th Int’l Symp. Requirements
Eng. (RE 99), IEEE CS Press, 1999, pp. 142–149.

6. M.C. Block and J.L. Cybulski, “Reusing UML Specifi-
cations in a Constrained Application Domain,” Proc.
5th Asia Pacific Software Eng. Conf. (APSEC 98), IEEE
CS Press, 1998.

7. M. Saeki, “Patterns and Aspects for Use Cases: Reuse
Techniques for Use Case Descriptions,” Proc. 4th Int’l
Conf. Requirements Eng. (ICRE 2000), IEEE CS Press,
2000.

8. K. Ryan and B. Mathews, “Matching Conceptual
Graphs as an Aid to Requirements Re-use,” Proc. IEEE
Int’l Symp. Requirements Eng. (RE 93), IEEE CS Press,
1993, pp. 112–120.

9. A. Finkelstein, “Re-use of Formatted Requirement Spec-
ifications,” IEEE Software Eng. J., vol. 2, no. 5, 1988,
pp. 186–197.

10. N. Maiden and A. Sutcliffe, “Exploiting Reusable Spec-
ifications through Analogy,” Comm. ACM, vol. 35, no.
4, 1992, pp. 55–64.

11. C. Rich, “Knowledge Representational Languages and
Predicate Calculus: How to Have Your Cake and Eat It
Too,” Proc. 2nd Nat’l Conf. Artificial Intelligence
(AAAI 82), AAAI Press, 1982, pp. 193–196.

12. I. Joyner, D.J. Cook, and L. B. Holder, “Discovery and
Evaluation of Graph-Based Hierarchical Conceptual
Clusters,” J. Machine Learning Research, Oct. 2001,
pp. 19–43.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 6 7

About the Authors

William N. Robinson is an associate professor in the Department of Computer Infor-
mation Systems at Georgia State University. His research interests include requirements engi-
neering, model-driven systems development, and e-commerce. He received his PhD in com-
puter science from the University of Oregon. He is a member of the IEEE, the ACM, and the
Association for Information Systems. Contact him at Computer Information Systems Dept., J.
Mack Robinson College of Business, Georgia State Univ., Atlanta, GA 30302-4015; wrobinson@
gsu.edu; http://cis.gsu.edu/~wrobinso.

Han G. Woo is a doctoral candidate in the Department of Computer Information Systems
at Georgia State University. His research interests include requirements engineering, process
knowledge management, and data mining. He received his MS in management information
systems from Seoul National University. Contact him at the Dept. of Computer Information
Systems, Georgia State Univ., 910, 35 Broad St., Atlanta, GA 30303; hwoo@student.gsu.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003100200046006500620072007500610072007900200032003000300034002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

