
code gcf Mart A. Hearst, Editor
University of California, Berkeley

hearstQsims.berkeley.edu

Wray Buntine, UC Berkeley and Ultimode Systems, Guest Editor

s a young NASA scientist looking for ways to apply
machine-learning technology, my saddest moments came
when I saw potential applications slip away. Shortages of
experts, management shuffling, and interdepartmental con-
flicts-those common application-killers-were not always to
blame. Sometimes, after I had spent weeks scoping out a
particular application with the expert and found that my

technology matched perfectly, I’d still
come up empty. Software-engineering
costs would kill an otherwise ideal appli-
cation. These defeats were tough to ac-
cept, because I could see great solutions
looming just over the horizon.

In the commercial world, I now find that
the biggest hurdles to delivering embedded
intelligence in software are again the soft-
ware-engineering costs. We members of
the intelligent-systems community have
brilliant techniques available, and no end
of applications is in sight, but the gap be-
tween intelligent-systems techniques and
delivered software is too great. Standard
programming languages and tools are too
general-purpose, and the standard means of
delivering a technology-as code libraries
or new-fangled componentware-is simply
too restricting for some specialties.

The skills many of my methodologically
oriented colleagues have honed-in learr-
ing, optimization, and image analysis, for
example-involve designing and refining
algorithms. But there is no commercially
accepted means for delivering such skills.
I earnestly hope that someday we will be
able to deliver our algorithm-design skills.
One way would be through domain-specific
code synthesis. Support for the develop-
ment of domain-specific extensions to pro-
gramming languages and of adaptive soft-
ware-where code synthesis is in the

inner-loop of a self-modifying programming
system-would have a profound effect in
this regard. This is the future of intelligent-
systems development!

Recent years have seen a significant
groundswell of activity in this area, so much
so that someone like me, with absolutely no
formal training in automated software engi-
neering, programming languages, or com-
pilers, can be asked to organize a discussion
on this critical technology-as Marti Hearst
has asked in this case. These days, scientists
with no specialized training in computer
science are developing code-generation tech-
niques for their own classes of languages,
while computer scientists with no formal
training in automated software engineering
are developing automated software-engi-
neering tools.

Controversies,” we will hear from three
different groups or individuals at the fore-
front of these developments. These authors
cover the full gamut of motivations, com-
mercial settings, and research backgrounds.

Peter Norvig, a well-known voice in our
community, presents his perspective as the
chief scientist of Junglee, a start-up software
development company. Automated software
engineering appears necessary to gain a
commercial advantage. Jeffrey Van Baalen,
a NASA principal investigator, presents his
view of some of NASA’s goals. Jeff does

In this month’s installment of “Trends &

MARCH/APRIL 1998

come with an automated-software-engineer-
ing background, and we will see that Jeff’s
group is able to deliver its technology in a
domain-specific context, avoiding the pit-
falls suffered by earlier proponents of for-
mal methods. Finally, David Spiegelhalter,
a respected biostatistician at Cambridge’s
Medical Research Council, and Andrew
Thomas of the Imperial College, London,
present a rather astonishing system that sup-
ports statisticians, based on the special-
purpose language of probability networks.

We have no real naysayers in this issue’s
discussion, but if you are a disbeliever, I
hope our three discussants will help change
your mind.

technohgy for mass customized
agents

Peter Norvig, Junglee Corp.
I define code synthesis as any process

that takes a representation of a problem as
input and produces a representation of a
function as output (see Figure 1). Many
technologies in widespread use fit this
broad definition: compilers, macro proces-
sors, compiler-compilers such as YACC,
and special-purpose languages such as
VHDL. Today, these tools all seem routine,
but remember that at one time they were
not; the first Fortran &anslator was origi-
nally called an automatic programming
system, not a compiler.

To eliminate the mundane, this essay
considers only cases where the transforma-
tion is surprisingly good. Either the repre-
sentation of the problem is unusually suc-
cinct, unconstrained, or high-level; or the
resulting code is unusually accurate or
makes especially good use of resources.
Clearly, surprisingly good is a moving tar-
get. Over time, we will see a gradual rise in
people’s expectations of their tools. Today,
we expect compilers to inline short func-

9

http://hearstQsims.berkeley.edu

tion calls, integrated development environ-
ments to synthesize window event-process-
ing code, and rnntime systems to manage
memory allocation. Next year, we will ex-
pect more. I predict that we will also see
specialized domains where more radical
code synthesis will revolutionize how work
is done. This happened with spreadsheets,
which opened up analytical processing to a
new class of nonprogramming users. In the
coming years, the same sort of revolution
will appear around agent programs.

Problem representations

lem. We can use axioms to logically de-
scribe the relationship between input and
output (the theorem proving approach). We
can describe the problem as a set of con-
straints on schedules and resources (the
pZanning approach). We can give sample
inpdoutput pairs (the statistical ap-
proach). Finally, we can provide a real or
simulated environment-and some time to
practice in it-and define an objective
function to optimize (the agents approach)

There are many ways to describe a prob-

Progi anis ObjECt Cod3 '

Specifications Source code

; ; m y s - F t
Parametei

syntntsizer ' v a ' ~ ~

Theorem proving. Succinct problem de-
scriptions can often be given as a set of
logical axioms. For example,

Sort(X, Y) :- Permutation(X,
U), Ordered(X) .
says that Y is the result of sorting X if Y is a
permutation of X and Y is an ordered se-
quence. (We would need additional axioms
for Permutation and Ordered.) This
is a logical definition of the sorting prob-
lem, and it is also an executable Prolog
program, but it is a very inefficient pro-
gram. Some theorem provers, however, can
transform a specification such as this into a
more efficient program.la2 Although such
systems can produce programs with thou-
sandfold speedups over hand-coded solu-
tions, they are not widely used because the
user requires some mathematical sophisti-
cation (such as understanding what an
axiom is) and because initially specifying a
domain incurs a large cost.

One pervasive kind of code optimization
is partial evaluation, in which a general
program specification is specialized by
filling in particular parameters, and the
resulting code propagates the constraints
imposed by the ~arameter .~ For example,
given a general exponentiation routine,

10

Figure 1. Code synthesis.

- - --- I - i- ,-

Ttinmg

Peifornance
Tee3 uac k

Figure 2. Adaptive-software approach.

expt (x, n) , a partial evaluator could
compile y=expt (x, 4); into y=x*x;
y=y*y, in effect unrolling the loop inside
expt. Partial evaluators are often used as
part of domain-spec@ languages: which
are designed to include exactly those ab-
stractions that are useful in a particular
domain. A program in a domain-specific
language has the feel of high-level specifi-
cation but is executable by conventional
means (including partial evaluation,
higher-order functions, and syntactic
abstraction).

Planning. A great deal of practical work
has gone into solving problems that are
expressed as a set of constraints on goals
and tasks, and the time and resources they
require.There are many general algonthms
for planning and scheduling, and although
they all have dismal worst-case perform-
ance bounds, in practice you can usually
find a good algorithm for a particular prob-
lem domain. The trick is in choosing the
right algorithm, but this can often be done
by an automatic5 or user-assisted6 search
through the space of possible planning
algorithms.

Statistical. What happens if you don't have
a clear problem specification and so cannot
generate candidate solutions? For example,
suppose you are trying to write a program
to predict the weather or the stock market.
You won't have a complete theory of the

domain, but you will have a good set of
historical data. A nonlinear regression rou-
tine, a neural network, or one of many other
machine-learning techniques can synthesize
a function that fits the set of data points and
that you can use to make predictions. Statis-
tical function approximation and prediction
is widely used, but it is not normally con-
sidered a code-synthesis approach, because
people hesitate to accept code they h o w is
only an approximation.

However, use of the statistical approach
as a component of a larger system is in-
creasing, particularly when making the
wrong prediction leads only to a slower
program, rather than an incorrect one. For
example, a memory-allocation routine
(such as malloc) could perform better if it
knew how long the allocated memory
would be alive before being freed. Decision
trees have been used to accurately predict
the lifetime of objects? This automatic-
learning version of malloc performed
better than the standard malloc, and better
even than very sophisticated handcrafted
allocation routines. Similar work has been
done for choosing an efficient data-type
implementation, doing branch prediction,
scheduling straight-line code on a parallel
machme, and accomplishing other tasks.

Agents. Currently, the World Wide Web is
a collection of powerful server programs
that mostly point to, but do not communi-
cate with, each other. Interaction is gener-
ally driven by a human sitting at a browser
client, except for a small number of spe-
cialized servers, such as AltaVista, that
aggregate information from other servers.
We are just beginning to see tools to syn-
thesize domain-specific or personalized
software agents that automate the tasks a
human must now do. For example, in
Yahoo's shopping guide,* a user can search
for the title of a book and see all the offer-
ings of that title by the major online book-
sellers, presented on one page in a com-
mon, easy-to-compare format. It would
take a hundred clicks or so to gather this
information manually. The technology
behind this differs from traditional search
engines in that there is a custom agent to
gather information from each Web site
(Amazon, Barnes & Noble, and so forth),
rather than one generic program that in-
dexes the whole Web.9

Today, developers write each custom
agent manually, using a specialized toolkit.

lEEE INTELLIGENT SYSTEMS

But because this manual coding is time-
consuming. Junglee is investing in code-
synthesis technology to automatically gen-
erate custom agents for each new Web site.
The idea is to define a specification of the
book-shopping domain in particular and of
Web-site structure in general. Then, when
faced with a new online bookseller, we can
run an agent-synthesis program that auto-
matically discovers the proper way to inter-
act with the Web site to search for books.
Synthesizing such an agent is essentially
a complex grammar-induction problem,
driven by knowledge of Web protocols
(HTTP and HTML, for example), Web-site
structuring principles, and natural-language
expressions that are used in the domain.
Other researchers are working on synthesis
of natural-language extraction agents.1°

Funttion quality
Now that we've seen some alternative

representations of a problem specification,
let's consider what it would mean for the
synthesized code to be surprisingly good.
First, the execution speed or memory use
could be surprisingly good, as in the 90-
fold speedup achieved through partial eval-
uation by Andrew Berlin and Daniel
W i e ~ e . ~ Second, the code could be more
nearly optimal than expected, as in the life-
time prediction module that achieved
99.9% accuracy on some program^.^ Third,
the programmer effort to develop and
maintain the program could be r e d ~ c e d . ~ . ~
This is probably the most important aspect.

Code synthesis might prove to be a key
silver bullet for software engineering-not
because all programs will be automatically
synthesized, but because synthesis might be
the only way to efficiently combine other
software pieces. A well-designed class,
framework, or component consists of a basic
algorithm or algorithms and a series of im-
plementation trade-offs, all packaged as an
abstraction. One thing that is abstracted
away is performance considerations, which
sometimes makes the abstraction unusable.
This is especially true when we build a large
system out of a tower of abstractions.

Traditionally, the only solution is to
break the abstraction barrier and write new
code rather than reuse existing code. The
adaptive-software approach (see Figure 2)
separates a function's description and run-
time operation into two orthogonal axes."
The horizontal axis gives the traditional
inputloutput specification; the vertical

Petcr Norvig is chicf scicntist at Junglce Corporation. His intcrcsts span all
of artificial intelligencc, with an emphasis on practical ink"tion cxtrac-
tion and integration from tcxt sources. Hc rcccived a BS i n applied mathe-
matics from Brown University and a PhD in computer science Irom the
IJniversity of California, Berkeley. He recently published ArtIficiul bzrclli-
gence: A Modern Approcich (Prenticc Hall, 1995). Hc is a metnbcr of the
ACM and AAAT, and a hoard member of the Evaluation of Intelligent Sys-
tems online resource. Contact him at Junplee Corp.. 1250 Oakmead Park-
way, Sunnyvale, CA 94086; norvig(o:iunglee.com; http://w\\,w.nowig.com.

---! Jeffrey Van Raalen is a principal research scientist at NASA Aines Re-
! search Center and an associate professor of computer science at the Univcr-
: sity of Wyoming. His inlcrchts include autoirialcd sofi\vare eugineciing,

autoinatcd deduction, and artilicial intelligence. Hc received his RS and MS
i n computer sciencc' from the University of Wyoming and his PhD in elec-
trical engineering and computer science from MIT. Contact hiin at MS 269-
2 Code IC, NASA Ames Research Center, Moffett Field, CA 93035; jvb@
ptolemy.arc.nasa.gov.

.

.,",.,..
. ..::..-- : z .

-: David Spiegelhalfer is a senior statistician at thc Medical Research Council
I3io\lalislics IJnit in Cambridge; U K . His main research area has been
13;1! k4an reasoning. whether applied to slatirtics. snificial intelligence. or
I~~~iillli-technology asscssmcnt. I-le received an MA in malhcinalics rrom
()\lord Univcrsity and a PhD i n mathematical statistics lrom London IJni-
\L*r,ily. Contact hiin at MRC Biostatistics Unit, Inst. dPuhlic Health. [jtiiv.

~ ~ ~ r ~ ~ - l ~ s i ~ . c a ~ n . a c . u ~ .

.

. 43* ';"
. .
/ : . .

Iiirvic Site, Rohinson Way, Cambridge CB2 2SR. 1JK: ~la\~id.spie~clhalter~

'; Andmw Thomas is a soCtware enginccr at Imperial College. 1.ondon. His
: i main research area is designing and implementing software lor probabilis-
,,'j tic reasoning. Hc rcccived a BA in nalural scicnces from Cainhridge Uni-

1 versity and a PliD in theoretical physics from I.ivcqxwl University. Con~acl
him :it the Dept. of Epidemiology and Puhlic Health. Imperial College
School of Mcdicine at St Mary's, Norfolk Placc, I.ondon, W2 IPC; sndrew.

Wray Buntine is a research engineer with thc CAD group in the Electrical
Fmnpineering and Computer Scicncc Department at the University of Califor-
nia. Bcrkclcy: and vice president of K&D at Ultimodc Systcms. His research
interests iiiclude prohahilistic machine-learning methods and thcory, data
mining. graphical models, and inductive-logic programming. He received ii
RS in pure and applied inathematics froin thc University ol'Queenslant1 and
a PhD in computcr scicncc fritnn the University of Technology, Sydncy.
Contact him at LIC Berkclcy, EECS Dept., Cory Hall, Room 550, Bcrkclcy,
CA 94720- I 770; wray4ultimode.com: http://www-cad.cccs.bcrkclcy.edu/
-way/.

view gives a performance specification: it
describes the implementation choices and
parameter settings that can be altered, and
lets you measure performance at each set-
ting. We can use adaptive software by

Composing a program using the input/
output specifications:
Analyzing the performance characteris-
tics, either analytically (by looking at
the information in the vertical axis) or
empirically (by running the program on
test data); or
Synthesizing a more efficient program

by searching through the space of dif-
ferent implementation choices for one
that performs well. Companies such as
HarlequinI2 and Micro~of t '~ are active-
ly pursuing this approach.

References
1. "Specware," Kestrel Inst., Palo Alto, Calif.,

1997; http://www.kestrel.edu/HTML/
protot ypes/specware.html.

2. M. Kaufman and J. Moore, "A Computa-
tional Logic." Univ. of Texas, Austin, 1997;
http:Nwww.cs.utexas.edu/users/moore/acl2/
index.htm1.

MARCH/APRIL 1998 11

http://w\\,w.nowig.com
http://ptolemy.arc.nasa.gov
http://www-cad.cccs.bcrkclcy.edu
http://www.kestrel.edu/HTML
http:Nwww.cs.utexas.edu/users/moore/acl2

3. A. Berlin and D. Weise, “Compiling Scien-
tific Code Using Partial Evaluation,” Com-
puter, Vol. 23, No. 12, Dec. 1990, pp.
25-37; see also ftp://quilty.stanford.edu/
pubifuse-paperslREADME. html.

4. P. Hudak, “The Promise of Domain Specific
Languages,” keynote address from Usenix
DSL Conf., Yale Univ., New Haven, Conn.,
1997; ht~://www.cs.yale.eduiuserslhudakd~/
dsl/index.htm.

5. S. Minton, Machine Learning Methodsfor
Planning, Morgan Kaufman, San Francisco,
1997; http://www.mkp.comibooks-catalog/
1-55860-248-8.asp.

6. D. Smith and S. Kambhampati, “Automated
Synthesis of Planners and Schedulers,”
Kestrel Inst., 1997; http://www.kestrel.edu/
HTML/projects/arpa-plan2/index. html.

7. D. Cohn and S . Singh, “Predicting Life-
times in Dynamically Allocated Memory,”
Advances in Neural Information Processing
Systems 9, M. Mozer et al., eds, MIT Press,
Cambridge, Mass., 1997; see also http:ll
www.ai.mit.edu/people/cohdmemory.ps.

8. Visa Shopping Guide byYahoo!,Yahoo!
Inc., Santa Clara, Calif., 1998; http://
shopguide.yahoo.com/.

9. “Junglee Technology,” Junglee, Sunnyvale,
Calif., 1997; http://www.junglee.com/
tech/index.html.

10. S. Soderland, “Learning Information Ex-
traction Rules for Semi-structured and Free
Text,” draft paper, Univ. of Washington,
Seattle, 1997; http://www.cs.washington.
eduihomes/soderlanlWHISK.ps.

ware,” PCAIMagazine, 1997; http://www.
norvig.com/adapaper-pcai. html.

12. “Adaptive Systems Group,” Harlequin Inc.,
Cambridge, Mass., 1998; http://www.
harlequin.com/products/asg/asg .html.

13. “Decision Theory and Adaptive Systems,”
Microsoft, Redmond, Wash., 1998; http://
www.research.microsoft.com/dtas/.

11. P. Norvig and D. Cohn, “Adaptive Soft-

development of high-assurante
software generutors
Jeffrey Van Baalen, NASA Ames and the
University of Wyoming

The need for rapid generation and verifi-
cation of highly complex software has per-
vaded many government and industrial
settings, particularly so for NASA. NASA
missions inherently need high assurance. In
some cases, lives depend on the software:
in every space shuttle flight, for example,
astronauts’ lives depend on the flight-con-
trol software. In other cases, the software
must be autonomous: if it malfunctions, it’s
too far away to fix-as with the recent Mars
Pathfinder Rover (see Figure 3). Software
is increasingly difficult to develop; to be
cost-effective, most future software devel-

We plan to demonstrate this
data-understanding pro-

gram-synthesis fool in fhe
synthesis of software for
onboard spacecraff data

analysis and summarization
coordinated with remofe-

sensing/prospecfing robots.

opment and verification will need to be at a
higher level than is practiced currently.
This problem is particularly acute for high-
assurance software.

Domainqecific software
generators

By automatically generating programs
from problem specifications, DSSGs offer
a promising approach to elevating the level

Amphiof lAIF system, developed by the
Automated Software Engineering Group at
NASA’s Ames Research Center, assists
space scientists with solar system observa-
tion opportunity analysis. NASA’s space
scientists used this type of analysis, for
instance, when planning the use of the
Cassini spacecraft to investigate the com-
position of Saturn’s rings. For this purpose,
they designed experiments in which a radio
signal was to be transmitted through the
rings and received on Earth.

of software development For instance, the

The AmphioflAIF system allows space
scientists with limited or no computer sci-
ence background to construct opportunity-
analysis programs of this type.l An end user
employs the AmphionNAIF graphical tool
to specify a desired observation geometry.
AmphiodNAIF generates a Fortran pro-
gram to compute values based on the geom-
etry or to search for occurrences of the
geometry such as, “When will Cassini be in
position to transmit a signal through the
.rings of Saturn so that the signal can be
received on Earth?”

AmphionNAIF includes an animation
component that produces scientifically
realistic simulations of the programs it gen-
erates. Space scientists use these anima-
tions in their analyses.

DSSGs speed the development of appli-
cation software because they enable non-
computer science experts to automatically
generate this software from problem specifi-
cations. Rather than developing and debug-
ging programs, DSSG users develop and
debug problem specifications that describe
what a system should do, rather than how the
system should do it. The software lifecycle
rises to a problem-specification lifecycle.

Before the AmphionNAIF system came
along, space scientists had to write Fortran
programs to assist themselves in solar sys-
tem observation opportunity analysis. With
AmphiodNAIF, they can do analysis with-
out knowing anything about programming.
They need only know about space science.
Our experience has shown that space scien-
tists who are expert Fortran programmers
can generate observation opportunity ana-
lyzers an order of magnitude faster with
AmphionNAIF than by writing Fortran
programs directly. Obviously, the time sav-
ings are far more dramatic for scientists
who are not expert Fortran programmers.

Unfortunately, DSSGs are themselves
difficult to construct. All the problems as-

been elevated from the domain level to the
software-generator level. Most existing
DSSGs rely on nonoptimizing compiler
technology. Consequently, these systems
generate software efficiently but are expen-
sive to build and cannot guarantee the as-
surance level of the code they generate.

sociated with software development have

Deductive-synthesis technology
The AmphiodNAIF system is unique

among DSSGs because it relies on deduc-
tive-synthesis technology.2 In deductive syn-

12 IEEE INTELLIGENT SYSTEMS

ftp://quilty.stanford.edu
http://www.mkp.comibooks-catalog
http://www.kestrel.edu
http://shopguide.yahoo.com
http://www.junglee.com
http://www.cs.washington
http://www
http://www

thesis, a problem specification is described
as a theorem, and an automatic theorem
prover generates a program as a byproduct of
proving this theorem. Deductive-synthesis
technology enables the construction of high-
assurance software generators.

So why don’t all DSSGs incorporate
deductive-synthesis technology? First, in
using deductive synthesis, a software gen-
erator is developed by constructing a de-
clarative domain theory, which is a formal
description of a domain. In principle, such
theories should be much easier to develop
than developing a DSSG using compiler
technology. However, in practice, domain-
theory notation requires a great deal of
expertise to understand. Second, tuning a
domain theory for deductive analysis usu-
ally requires considerable time and exper-
tise. Each step in the tuning process pre-
serves the correctness of the synthesis but
makes it more efficient.

Three tools, collectively called Meta-
Amphion, are under development at NASA
Ames. They address the problems with de-
ductive-synthesis technology and will make
cost-effective construction of high-assur-
ance software generators a reality:

We are developing an environment that
helps domain experts create usable do-
main theories without necessarily
knowing domain-theory notation.
We are developing a tool that automati-
cally specializes a deductive-synthesis
system by transforming naively devel-
oped domain theories into theories that
are tuned for synthesis.
The general-purpose approach lets
users generate software that is provably
correct relative to a domain theory.
Hence, the problem of verification fo-
cuses on the correctness of the domain
theory. Domain theories are easier to
develop and verify than software. How-
ever, to make this process even easier,
we are developing a mechanism to help
identify errors in domain theories.

We have already made significant prog-
ress on all three tools, particularly on the
second one. Deductive synthesis relies on a
general-purpose, automated theorem prov-
er to generate programs. Theorem provers
are subject to exponential growth in the
search space required to find proofs, which
is why deductive synthesis can be very
inefficient. Domain theories must be tuned

to avoid this exponential search. In previ-
ous attempts to address exponential search
problems, system developers have gener-
ally tried to manually tune both a domain
theory and the theorem prover’s parame-
ters, based on the observed behavior of
the theorem prover over a series of test

Eliminating the exponential searth
Meta-Amphion takes a different auto-

matable approach to eliminating the expo-
nential search. This enables the tuning
component of Meta-Amphion to automati-
cally analyze an easy-to-validate but ineffi-
cient deductive-synthesis system and trans-
form it into an efficient DSSG.’ We used
deductive synthesis to construct Amphionl
NAIF, but then used Meta-Amphion to
automatically tune it to an efficient DSSG.

As our tools mature, we will demon-
strate them in a number of space-enterprise
domains, by using Meta-Amphion to de-
velop software generators. Two new do-
mains are in early development. One is the
automatic generation of numerical simula-
tions for computational fluid dynamics
problems in the support of high-lift aircraft
design. The second is data-understanding
software based on probabilistic algorithms.
In this case, a domain theory is given as a
set of probability formulas. Specifications
to the synthesis tool include error bounds.
We will use validated transformations that
exploit these error bounds to generate com-

pact and efficient code with verified termi-
nation, computational complexity, and
other attributes. We plan to demonstrate
this data-understanding programsynthesis
tool in the synthesis of software for on-
board spacecraft data analysis and summa-
rization coordinated with remote-sensing/
prospecting robots.

References
1.

2.

3.

4.

5 .

M. Lowry et al., “Amphion: Automatic
Programming for Scientific Subroutine
Libraries,” Proc. Eighth Int ’1 Symp. Method-
ologies for Intelligent Systems, Lecture
Notes in Computer Science, Vol. 869,
Springer-Verlag, New York, 1994, pp.
326-335.

2. Manna and R. Waldinger, “Fundamentals
of Deductive Program Synthesis,’’ IEEE
Trans. SofhYare Eng., Vol. 18, No. 8, Aug.
1992, pp. 674-704.

C. Chang and R. Lee, Syrnbolic Logic and
Mechanical Theorem Proving, Academic
Press, San Deigo, 1973.

L. Wos et al., Automated Reasoning: Intro-
duction and Applications, Prentice Hall,
Upper Saddle River, N.J., 1984.

M.R. Lowry and J. Van Baalen, “META-
AMPHION: Synthesis of Efficient Domain-
Specific Synthesis Systems.” J. Automated
SofhYare Eng., No. 4, 1997.

Figure 3. Thc Mars Patlifiiider Rover software had a process-cominuiiicatioii bug that, at least twice, caused a full systein
reset. Fortunately, this did not result in catastrophe, only in loss of contact with the rover for periods of up to 24 hours.

MARCH/APRIL 1998 13

sto;hcrstit system; the BUGS
Proiect
David Spzegelhalteq MRC Biostatistics
Unit, Cambridge, and Andrew Thomas,
Imperial College, London

This is an exciting time to be a statisti-
cian Not any statistician, of course-most
are shll doing the same dull analyses-but
if you are a Bayesian statistician, you find
yourself in the middle of an extraordinary
comng-together of apparently disparate
subjects. Researchers in artificial intelli-
gence, engineenng, genetics, image inter-
pretation, epidemiology, and many other
disciplines are discovering the common
language of Bayesian graphical models As
a result, they have begun pooling ideas on
models, computational algorithms, and
implementation methods

A crucial idea underlying this conflu-
ence is that arbitranly complex systems can
be represented as a graph of locally com-
municating components, malung these sys-
tems ideally suited to software-generabng
tools that let users avoid hand-coding each
new problem One small contribution, the
BUGS project shows how a generic and
flexible tool can generate solutions to com-
plex statistical-inference problems.

Bayesian networks
In the 1980s, Judea Pearl insisted that

probability could handle uncertainty in
complex intelligent systems, and that rea-
sonable conditional-independence assump-
tions led to a graphical representabon
known as a Bayesian network (Bayesian
refers to the use of a full probability model
to describe the chance of any combination
of events, using Bayes theorem to produce
inferences on the basis of any observed
data.) Not only was such a network intu-
itive and attractive, but it also formed the
basis for efficient local computation algo-
rithms2 Commercial packages rapidly ap-
peared that exploited graphical user inter-
faces to construct systems of arbitrary
structure and that then, at the compilahon
stage, automatically wrote the necessary
code for propagating evidence The Associ-
ation for Uncertainty in Artificial Intelli-
gence is a good starting point for explonng
this area (http //www auaz orgo, while the
Microsoft Research Decision Theory and
Adaptive Systems group (http.//www
research microsoft codresearcWdtg4 is

I

Figure 4. A Doodle for a model of growth patterns of rats. Each observation Y [i , j I represents the j th weighing of
the i t h rat, where the rectangular plates depict repetitive structure as i goes from 1 to N, and j from 1 to T.
Y [i , j 1 depends stochastically on its mean mu [i , j 1 and its measurement precision tau. c, where the distribu-
tional shape for this dependence i s selected from a pull-down menu (in particular, allowing it to be non-Gaussian).
mu [i , j 1 is assumed to follow a linear-regression model depending on age x [j I and parameterized by an intercept
alpha [i 1 and gradient beta [i 1 : the double arrows represent a deterministic relationship. Each rat’s intercept
and gradient are assumed to stochastically depend on some high-level parameters describing the whole population.
Again, the precise stochastic relationship is specified from a menu, while the graph depicts the essential qualitative
structure that drives the computationol algorithm. Additional parameters of interest, such as the error standard-devia-
tion sigma, can be added us deterministic modes, allowing inferences to be made on arbitrary functions of parame-
ters. The Doodle i s created by a simple series of point-and-click operations, and then generates the code to make infer-
ences about any unknown quantity in the model.

particularly active in many aspects of
Bayesian-network research.

The relationship of Bayesian networks to
other areas rapidly became apparent. Within
genetics, pedigree analysis used similar
representations and had developed similar
computational algorithms; in engineering,
filtering operations proved to have the same
essential ingredients. Most important, be-
cause for computational reasons Bayesian
networks become reexpressed as Markov
random fields, connections were made to
statistical physics, the spatial analysis of
images, and geographical epidemiology.
Exact propagation algorithms were not fea-
sible in these areas, so a range of approxi-
mate methods were developed: in particu-
lar, Markov chain Monte Carlo (MCMC)
methods entered mainstream (Bayesian)
statistical analysis in the early 1990s. The
stage was set for the conceptual integration
alluded to above.3 A very broad community
is now working on probabilistic graphical
models, which also now includes neural
networks and coding problems.

Code synthesis and BUGS
So what has this to do with code synthe-

sis? The unifying theme behind all these
research areas is the decomposition of
complex problems into smaller compo-
nents, which communicate locally to make

14

global inferences. Hence, it is natural to
have a graphical representation, a GUI for
specifying structure, and a facility for auto-
matically writing the code for carrying out
the necessary inferences. In theory, users
can assemble a basic set of components in
whatever way they like that still provides a
reasonably efficient and accurate analysis.

Our BUGS project has attempted a step
toward t h s ultimate goal (http://www.
mrc-bsu.cam.ac.uk/bugs/). BUGS stands for
Bayesian inference using Gibbs sampling,
revealing that the basic computational algo-
rithm was initially a specific MCMC simu-
lation method that is ideally suited to graph-
ical models, in which all unknown quantities
are repeatedly simulated from their “full
conditional” distributions. Newer versions
of BUGS have extended the MCMC reper-
toire to include more general Metropolis
sampling. The most recent version has a
graphics editor (DoodleBUGS), which lets
users constrnct directed acyclic graphs of
arbitrary complexity through point-and-
click operations and then use pull-down
menus to select probability distributions on
the links of that graph. Figure 4 shows an
example of a Doodle.

How BUGS works
The BUGS system parses data structures

underlying the graphical description of the

IEEE INTELLlGENT SYSTEMS

http://www

model in the DoodleBUGS
editor into a tree form. It then
traverses this tree and creates
and wires together a series of
objects to form a low-level
representation of the Bayesian
model (the graph layer). This is
a compilation process: the
Doodle is the “source code”
and the wired objects the “exe-
cutable code.” The wired ob-
jects have methods and state
variables that match the appro-
priate statistical concepts, and each different
class of object is implemented as a separate
component and is only loaded if required.
BUGS stores the component names and the
model specification language’s syntax in a
file, which it uses to parameterize the Doo-
dleBUGS parser. A second layer of objects
(the updater layer) carries out statistical in-
ference using MCMC simulation, with each
variant of the MCMC algorithm again imple-
mented as a component. BUGS uses a dis-
tributed rule base to choose which variant
of MCMC to use for a particular simula-
tion. The updater layer uses methods im-
plemented in the graph layer and copies
simulated values back down to this layer.
A third layer of objects watches the graph
layer and produces summaries of the simu-
lated values on user demand.

This software design is very flexible.
Very general statistical models built out of
standard building blocks can be analyzed,
although we are now writing specialized
components to handle special areas such as
pharmacokinetics and spatial statistics.
Once written, these components are on the
same footing as those already existing, and
new components can be added to the soft-
ware at any time without any recompiling,
indeed without any access to the source
code. We used the Component Pascal lan-
guage (conceptually very similar to Java)
to write the software and used the Black-
Box framework (http://www. oberon. ch) to
implement a visual user in te r fa~e .~

Who is BUGS for?
We designed BUGS for a particular class

of intermediate-level users. It is not suitable
for people who want to fit standard regression
models to data and can get by with a standard
$500 statistics package. Neither is it suitable
for cutting-edge researchers in MCMC tech-
niques. However, a surprisingly large group
of researchers want to use realistically com-

MARCHIAPRIL 1998

plex models for their particular problem, real-
ize this will require nonstandard statistical
methodology, yet are (very sensibly) loath
to start writing their own code. BUGS lets
them do fairly rapid prototyping and explore
a range of model assumptions that would
take a huge effort to program from scratch.
The range of subject areas and associated
models is unpredictable: users have been
interested in predicting stock prices, model-
ing prawn abundance off the Great Barrier
Reef, and identifying geographical clusters
of leukemia.

BUGS is a natural extension of the suc-
cessful expert system packages that imple-
mented Bayesian networks, but the transi-
tion from exact to Monte Carlo methods
greatly widens its potential applicability. Its
development has been an iterative process,
driven in equal measure by the program-
ming philosophy and the statistical objec-
tives. It has been very exciting to see how
well these have integrated. There are certain
restrictions to the distributions that can be
used and to the sampling algorithms, but
these are due to necessary prioritization
rather than essential incapacity. We can
implement additional distributions as new
low-level components, while also introduc-
ing more flexible algorithms by making the
higher level more “intelligent” at recogniz-
ing appropriate model structures.

Currently, the program’s biostatistical
background is evident and, although we
are adapting it to specific areas (pharmaco-
kinetics and geographical epidemiology), it
will not be the most efficient program for
the huge range of problems that might be
considered under the broad heading of com-
plex stochastic systems. However, as the
neural-network, engineering, social science,
and other communities increasingly adopt
the Bayesian graphical modeling language,
we feel confident that the basic philosophy
of component-based programming is the

3 .

4.

5.

6.

7.

correct one for developing flexible
and incremental tools for analysis.

References
1. J. Pearl, Probabilistic Inference

in Intelligent Systems, Morgan
Kaufmann, San Francisco, 1988.

S.L. Lauritzen and D.J. Spiegel-
halter, “Local Computations with
Probabilities on Graphical Struc-
tures and their Application to
Expert Systems (with Discus-
sion),’’ J. Royal Statistics Soc. B,

2.

Vol. 50, 1988, pp. 157-224.

W. Buntine, “Operations for Learning with
Graphical Models,” J. AI Research, Vol. 2,
1994, pp. 159-255.

M.I. Jordan, Learning in Graphical Models,
Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1998.

R. Neal, Bayesian Learning for Neural
Networks, Springer-Verlag, New York,
1996.

B.J. Frey, Bayesian Networks for Pattern
Classification, Data Compression, and
Channel Coding, MIT Press, Cambridge,
Mass., 1998.

C. Szyperski, Component Software, Addi-
son-Wesley, Harlow, UK, 1997.

http://www

