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s a young NASA scientist looking for ways to apply 
machine-learning technology, my saddest moments came 
when I saw potential applications slip away. Shortages of 
experts, management shuffling, and interdepartmental con- 
flicts-those common application-killers-were not always to 
blame. Sometimes, after I had spent weeks scoping out a 
particular application with the expert and found that my 

technology matched perfectly, I’d still 
come up empty. Software-engineering 
costs would kill an otherwise ideal appli- 
cation. These defeats were tough to ac- 
cept, because I could see great solutions 
looming just over the horizon. 

In the commercial world, I now find that 
the biggest hurdles to delivering embedded 
intelligence in software are again the soft- 
ware-engineering costs. We members of 
the intelligent-systems community have 
brilliant techniques available, and no end 
of applications is in sight, but the gap be- 
tween intelligent-systems techniques and 
delivered software is too great. Standard 
programming languages and tools are too 
general-purpose, and the standard means of 
delivering a technology-as code libraries 
or new-fangled componentware-is simply 
too restricting for some specialties. 

The skills many of my methodologically 
oriented colleagues have honed-in learr- 
ing, optimization, and image analysis, for 
example-involve designing and refining 
algorithms. But there is no commercially 
accepted means for delivering such skills. 
I earnestly hope that someday we will be 
able to deliver our algorithm-design skills. 
One way would be through domain-specific 
code synthesis. Support for the develop- 
ment of domain-specific extensions to pro- 
gramming languages and of adaptive soft- 
ware-where code synthesis is in the 

inner-loop of a self-modifying programming 
system-would have a profound effect in 
this regard. This is the future of intelligent- 
systems development! 

Recent years have seen a significant 
groundswell of activity in this area, so much 
so that someone like me, with absolutely no 
formal training in automated software engi- 
neering, programming languages, or com- 
pilers, can be asked to organize a discussion 
on this critical technology-as Marti Hearst 
has asked in this case. These days, scientists 
with no specialized training in computer 
science are developing code-generation tech- 
niques for their own classes of languages, 
while computer scientists with no formal 
training in automated software engineering 
are developing automated software-engi- 
neering tools. 

Controversies,” we will hear from three 
different groups or individuals at the fore- 
front of these developments. These authors 
cover the full gamut of motivations, com- 
mercial settings, and research backgrounds. 

Peter Norvig, a well-known voice in our 
community, presents his perspective as the 
chief scientist of Junglee, a start-up software 
development company. Automated software 
engineering appears necessary to gain a 
commercial advantage. Jeffrey Van Baalen, 
a NASA principal investigator, presents his 
view of some of NASA’s goals. Jeff does 

In this month’s installment of “Trends & 
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come with an automated-software-engineer- 
ing background, and we will see that Jeff’s 
group is able to deliver its technology in a 
domain-specific context, avoiding the pit- 
falls suffered by earlier proponents of for- 
mal methods. Finally, David Spiegelhalter, 
a respected biostatistician at Cambridge’s 
Medical Research Council, and Andrew 
Thomas of the Imperial College, London, 
present a rather astonishing system that sup- 
ports statisticians, based on the special- 
purpose language of probability networks. 

We have no real naysayers in this issue’s 
discussion, but if you are a disbeliever, I 
hope our three discussants will help change 
your mind. 

technohgy for mass customized 
agents 

Peter Norvig, Junglee Corp. 
I define code synthesis as any process 

that takes a representation of a problem as 
input and produces a representation of a 
function as output (see Figure 1). Many 
technologies in widespread use fit this 
broad definition: compilers, macro proces- 
sors, compiler-compilers such as YACC, 
and special-purpose languages such as 
VHDL. Today, these tools all seem routine, 
but remember that at one time they were 
not; the first Fortran &anslator was origi- 
nally called an automatic programming 
system, not a compiler. 

To eliminate the mundane, this essay 
considers only cases where the transforma- 
tion is surprisingly good. Either the repre- 
sentation of the problem is unusually suc- 
cinct, unconstrained, or high-level; or the 
resulting code is unusually accurate or 
makes especially good use of resources. 
Clearly, surprisingly good is a moving tar- 
get. Over time, we will see a gradual rise in 
people’s expectations of their tools. Today, 
we expect compilers to inline short func- 
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tion calls, integrated development environ- 
ments to synthesize window event-process- 
ing code, and rnntime systems to manage 
memory allocation. Next year, we will ex- 
pect more. I predict that we will also see 
specialized domains where more radical 
code synthesis will revolutionize how work 
is done. This happened with spreadsheets, 
which opened up analytical processing to a 
new class of nonprogramming users. In the 
coming years, the same sort of revolution 
will appear around agent programs. 

Problem representations 

lem. We can use axioms to logically de- 
scribe the relationship between input and 
output (the theorem proving approach). We 
can describe the problem as a set of con- 
straints on schedules and resources (the 
pZanning approach). We can give sample 
inpdoutput pairs (the statistical ap- 
proach). Finally, we can provide a real or 
simulated environment-and some time to 
practice in it-and define an objective 
function to optimize (the agents approach) 

There are many ways to describe a prob- 

Progi anis ObjECt Cod3 ' 

Specifications Source code 

; ; m y s - F t  
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syntntsizer ' v a ' ~ ~  

Theorem proving. Succinct problem de- 
scriptions can often be given as a set of 
logical axioms. For example, 

Sort(X, Y )  :- Permutation(X, 
U), Ordered(X) . 
says that Y is the result of sorting X if Y is a 
permutation of X and Y is an ordered se- 
quence. (We would need additional axioms 
for Permutation and Ordered.) This 
is a logical definition of the sorting prob- 
lem, and it is also an executable Prolog 
program, but it is a very inefficient pro- 
gram. Some theorem provers, however, can 
transform a specification such as this into a 
more efficient program.la2 Although such 
systems can produce programs with thou- 
sandfold speedups over hand-coded solu- 
tions, they are not widely used because the 
user requires some mathematical sophisti- 
cation (such as understanding what an 
axiom is) and because initially specifying a 
domain incurs a large cost. 

One pervasive kind of code optimization 
is partial evaluation, in which a general 
program specification is specialized by 
filling in particular parameters, and the 
resulting code propagates the constraints 
imposed by the ~arameter .~  For example, 
given a general exponentiation routine, 
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Figure 1. Code synthesis. 
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Figure 2. Adaptive-software approach. 

expt (x, n)  , a partial evaluator could 
compile y=expt (x, 4); into y=x*x; 
y=y*y, in effect unrolling the loop inside 
expt. Partial evaluators are often used as 
part of domain-spec@ languages: which 
are designed to include exactly those ab- 
stractions that are useful in a particular 
domain. A program in a domain-specific 
language has the feel of high-level specifi- 
cation but is executable by conventional 
means (including partial evaluation, 
higher-order functions, and syntactic 
abstraction). 

Planning. A great deal of practical work 
has gone into solving problems that are 
expressed as a set of constraints on goals 
and tasks, and the time and resources they 
require.There are many general algonthms 
for planning and scheduling, and although 
they all have dismal worst-case perform- 
ance bounds, in practice you can usually 
find a good algorithm for a particular prob- 
lem domain. The trick is in choosing the 
right algorithm, but this can often be done 
by an automatic5 or user-assisted6 search 
through the space of possible planning 
algorithms. 

Statistical. What happens if you don't have 
a clear problem specification and so cannot 
generate candidate solutions? For example, 
suppose you are trying to write a program 
to predict the weather or the stock market. 
You won't have a complete theory of the 

domain, but you will have a good set of 
historical data. A nonlinear regression rou- 
tine, a neural network, or one of many other 
machine-learning techniques can synthesize 
a function that fits the set of data points and 
that you can use to make predictions. Statis- 
tical function approximation and prediction 
is widely used, but it is not normally con- 
sidered a code-synthesis approach, because 
people hesitate to accept code they h o w  is 
only an approximation. 

However, use of the statistical approach 
as a component of a larger system is in- 
creasing, particularly when making the 
wrong prediction leads only to a slower 
program, rather than an incorrect one. For 
example, a memory-allocation routine 
(such as malloc) could perform better if it 
knew how long the allocated memory 
would be alive before being freed. Decision 
trees have been used to accurately predict 
the lifetime of objects? This automatic- 
learning version of malloc performed 
better than the standard malloc, and better 
even than very sophisticated handcrafted 
allocation routines. Similar work has been 
done for choosing an efficient data-type 
implementation, doing branch prediction, 
scheduling straight-line code on a parallel 
machme, and accomplishing other tasks. 

Agents. Currently, the World Wide Web is 
a collection of powerful server programs 
that mostly point to, but do not communi- 
cate with, each other. Interaction is gener- 
ally driven by a human sitting at a browser 
client, except for a small number of spe- 
cialized servers, such as AltaVista, that 
aggregate information from other servers. 
We are just beginning to see tools to syn- 
thesize domain-specific or personalized 
software agents that automate the tasks a 
human must now do. For example, in 
Yahoo's shopping guide,* a user can search 
for the title of a book and see all the offer- 
ings of that title by the major online book- 
sellers, presented on one page in a com- 
mon, easy-to-compare format. It would 
take a hundred clicks or so to gather this 
information manually. The technology 
behind this differs from traditional search 
engines in that there is a custom agent to 
gather information from each Web site 
(Amazon, Barnes & Noble, and so forth), 
rather than one generic program that in- 
dexes the whole Web.9 

Today, developers write each custom 
agent manually, using a specialized toolkit. 
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But because this manual coding is time- 
consuming. Junglee is investing in code- 
synthesis technology to automatically gen- 
erate custom agents for each new Web site. 
The idea is to define a specification of the 
book-shopping domain in particular and of 
Web-site structure in general. Then, when 
faced with a new online bookseller, we can 
run an agent-synthesis program that auto- 
matically discovers the proper way to inter- 
act with the Web site to search for books. 
Synthesizing such an agent is essentially 
a complex grammar-induction problem, 
driven by knowledge of Web protocols 
(HTTP and HTML, for example), Web-site 
structuring principles, and natural-language 
expressions that are used in the domain. 
Other researchers are working on synthesis 
of natural-language extraction agents.1° 

Funttion quality 
Now that we've seen some alternative 

representations of a problem specification, 
let's consider what it would mean for the 
synthesized code to be surprisingly good. 
First, the execution speed or memory use 
could be surprisingly good, as in the 90- 
fold speedup achieved through partial eval- 
uation by Andrew Berlin and Daniel 
W i e ~ e . ~  Second, the code could be more 
nearly optimal than expected, as in the life- 
time prediction module that achieved 
99.9% accuracy on some  program^.^ Third, 
the programmer effort to develop and 
maintain the program could be r e d ~ c e d . ~ . ~  
This is probably the most important aspect. 

Code synthesis might prove to be a key 
silver bullet for software engineering-not 
because all programs will be automatically 
synthesized, but because synthesis might be 
the only way to efficiently combine other 
software pieces. A well-designed class, 
framework, or component consists of a basic 
algorithm or algorithms and a series of im- 
plementation trade-offs, all packaged as an 
abstraction. One thing that is abstracted 
away is performance considerations, which 
sometimes makes the abstraction unusable. 
This is especially true when we build a large 
system out of a tower of abstractions. 

Traditionally, the only solution is to 
break the abstraction barrier and write new 
code rather than reuse existing code. The 
adaptive-software approach (see Figure 2) 
separates a function's description and run- 
time operation into two orthogonal axes." 
The horizontal axis gives the traditional 
inputloutput specification; the vertical 
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view gives a performance specification: it 
describes the implementation choices and 
parameter settings that can be altered, and 
lets you measure performance at each set- 
ting. We can use adaptive software by 

Composing a program using the input/ 
output specifications: 
Analyzing the performance characteris- 
tics, either analytically (by looking at 
the information in the vertical axis) or 
empirically (by running the program on 
test data); or 
Synthesizing a more efficient program 

by searching through the space of dif- 
ferent implementation choices for one 
that performs well. Companies such as 
HarlequinI2 and Micro~of t '~  are active- 
ly pursuing this approach. 
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development of high-assurante 
software generutors 
Jeffrey Van Baalen, NASA Ames and the 
University of Wyoming 

The need for rapid generation and verifi- 
cation of highly complex software has per- 
vaded many government and industrial 
settings, particularly so for NASA. NASA 
missions inherently need high assurance. In 
some cases, lives depend on the software: 
in every space shuttle flight, for example, 
astronauts’ lives depend on the flight-con- 
trol software. In other cases, the software 
must be autonomous: if it malfunctions, it’s 
too far away to fix-as with the recent Mars 
Pathfinder Rover (see Figure 3). Software 
is increasingly difficult to develop; to be 
cost-effective, most future software devel- 

We plan to demonstrate this 
data-understanding pro- 

gram-synthesis fool in fhe 
synthesis of  software for 
onboard spacecraff data 

analysis and summarization 
coordinated with remofe- 

sensing/prospecfing robots. 

opment and verification will need to be at a 
higher level than is practiced currently. 
This problem is particularly acute for high- 
assurance software. 

Domainqecific software 
generators 

By automatically generating programs 
from problem specifications, DSSGs offer 
a promising approach to elevating the level 

Amphiof lAIF system, developed by the 
Automated Software Engineering Group at 
NASA’s Ames Research Center, assists 
space scientists with solar system observa- 
tion opportunity analysis. NASA’s space 
scientists used this type of analysis, for 
instance, when planning the use of the 
Cassini spacecraft to investigate the com- 
position of Saturn’s rings. For this purpose, 
they designed experiments in which a radio 
signal was to be transmitted through the 
rings and received on Earth. 

of software development For instance, the 

The AmphioflAIF system allows space 
scientists with limited or no computer sci- 
ence background to construct opportunity- 
analysis programs of this type.l An end user 
employs the AmphionNAIF graphical tool 
to specify a desired observation geometry. 
AmphiodNAIF generates a Fortran pro- 
gram to compute values based on the geom- 
etry or to search for occurrences of the 
geometry such as, “When will Cassini be in 
position to transmit a signal through the 
.rings of Saturn so that the signal can be 
received on Earth?” 

AmphionNAIF includes an animation 
component that produces scientifically 
realistic simulations of the programs it gen- 
erates. Space scientists use these anima- 
tions in their analyses. 

DSSGs speed the development of appli- 
cation software because they enable non- 
computer science experts to automatically 
generate this software from problem specifi- 
cations. Rather than developing and debug- 
ging programs, DSSG users develop and 
debug problem specifications that describe 
what a system should do, rather than how the 
system should do it. The software lifecycle 
rises to a problem-specification lifecycle. 

Before the AmphionNAIF system came 
along, space scientists had to write Fortran 
programs to assist themselves in solar sys- 
tem observation opportunity analysis. With 
AmphiodNAIF, they can do analysis with- 
out knowing anything about programming. 
They need only know about space science. 
Our experience has shown that space scien- 
tists who are expert Fortran programmers 
can generate observation opportunity ana- 
lyzers an order of magnitude faster with 
AmphionNAIF than by writing Fortran 
programs directly. Obviously, the time sav- 
ings are far more dramatic for scientists 
who are not expert Fortran programmers. 

Unfortunately, DSSGs are themselves 
difficult to construct. All the problems as- 

been elevated from the domain level to the 
software-generator level. Most existing 
DSSGs rely on nonoptimizing compiler 
technology. Consequently, these systems 
generate software efficiently but are expen- 
sive to build and cannot guarantee the as- 
surance level of the code they generate. 

sociated with software development have 

Deductive-synthesis technology 
The AmphiodNAIF system is unique 

among DSSGs because it relies on deduc- 
tive-synthesis technology.2 In deductive syn- 
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thesis, a problem specification is described 
as a theorem, and an automatic theorem 
prover generates a program as a byproduct of 
proving this theorem. Deductive-synthesis 
technology enables the construction of high- 
assurance software generators. 

So why don’t all DSSGs incorporate 
deductive-synthesis technology? First, in 
using deductive synthesis, a software gen- 
erator is developed by constructing a de- 
clarative domain theory, which is a formal 
description of a domain. In principle, such 
theories should be much easier to develop 
than developing a DSSG using compiler 
technology. However, in practice, domain- 
theory notation requires a great deal of 
expertise to understand. Second, tuning a 
domain theory for deductive analysis usu- 
ally requires considerable time and exper- 
tise. Each step in the tuning process pre- 
serves the correctness of the synthesis but 
makes it more efficient. 

Three tools, collectively called Meta- 
Amphion, are under development at NASA 
Ames. They address the problems with de- 
ductive-synthesis technology and will make 
cost-effective construction of high-assur- 
ance software generators a reality: 

We are developing an environment that 
helps domain experts create usable do- 
main theories without necessarily 
knowing domain-theory notation. 
We are developing a tool that automati- 
cally specializes a deductive-synthesis 
system by transforming naively devel- 
oped domain theories into theories that 
are tuned for synthesis. 
The general-purpose approach lets 
users generate software that is provably 
correct relative to a domain theory. 
Hence, the problem of verification fo- 
cuses on the correctness of the domain 
theory. Domain theories are easier to 
develop and verify than software. How- 
ever, to make this process even easier, 
we are developing a mechanism to help 
identify errors in domain theories. 

We have already made significant prog- 
ress on all three tools, particularly on the 
second one. Deductive synthesis relies on a 
general-purpose, automated theorem prov- 
er to generate programs. Theorem provers 
are subject to exponential growth in the 
search space required to find proofs, which 
is why deductive synthesis can be very 
inefficient. Domain theories must be tuned 

to avoid this exponential search. In previ- 
ous attempts to address exponential search 
problems, system developers have gener- 
ally tried to manually tune both a domain 
theory and the theorem prover’s parame- 
ters, based on the observed behavior of 
the theorem prover over a series of test 

Eliminating the exponential searth 
Meta-Amphion takes a different auto- 

matable approach to eliminating the expo- 
nential search. This enables the tuning 
component of Meta-Amphion to automati- 
cally analyze an easy-to-validate but ineffi- 
cient deductive-synthesis system and trans- 
form it into an efficient DSSG.’ We used 
deductive synthesis to construct Amphionl 
NAIF, but then used Meta-Amphion to 
automatically tune it to an efficient DSSG. 

As our tools mature, we will demon- 
strate them in a number of space-enterprise 
domains, by using Meta-Amphion to de- 
velop software generators. Two new do- 
mains are in early development. One is the 
automatic generation of numerical simula- 
tions for computational fluid dynamics 
problems in the support of high-lift aircraft 
design. The second is data-understanding 
software based on probabilistic algorithms. 
In this case, a domain theory is given as a 
set of probability formulas. Specifications 
to the synthesis tool include error bounds. 
We will use validated transformations that 
exploit these error bounds to generate com- 

pact and efficient code with verified termi- 
nation, computational complexity, and 
other attributes. We plan to demonstrate 
this data-understanding programsynthesis 
tool in the synthesis of software for on- 
board spacecraft data analysis and summa- 
rization coordinated with remote-sensing/ 
prospecting robots. 
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Figure 3. Thc Mars Patlifiiider Rover software had a process-cominuiiicatioii bug that, at least twice, caused a full systein 
reset. Fortunately, this did not result in catastrophe, only in loss of contact with the rover for periods of up to 24 hours. 
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This is an exciting time to be a statisti- 
cian Not any statistician, of course-most 
are shll doing the same dull analyses-but 
if you are a Bayesian statistician, you find 
yourself in the middle of an extraordinary 
comng-together of apparently disparate 
subjects. Researchers in artificial intelli- 
gence, engineenng, genetics, image inter- 
pretation, epidemiology, and many other 
disciplines are discovering the common 
language of Bayesian graphical models As 
a result, they have begun pooling ideas on 
models, computational algorithms, and 
implementation methods 

A crucial idea underlying this conflu- 
ence is that arbitranly complex systems can 
be represented as a graph of locally com- 
municating components, malung these sys- 
tems ideally suited to software-generabng 
tools that let users avoid hand-coding each 
new problem One small contribution, the 
BUGS project shows how a generic and 
flexible tool can generate solutions to com- 
plex statistical-inference problems. 

Bayesian networks 
In the 1980s, Judea Pearl insisted that 

probability could handle uncertainty in 
complex intelligent systems, and that rea- 
sonable conditional-independence assump- 
tions led to a graphical representabon 
known as a Bayesian network (Bayesian 
refers to the use of a full probability model 
to describe the chance of any combination 
of events, using Bayes theorem to produce 
inferences on the basis of any observed 
data.) Not only was such a network intu- 
itive and attractive, but it also formed the 
basis for efficient local computation algo- 
rithms2 Commercial packages rapidly ap- 
peared that exploited graphical user inter- 
faces to construct systems of arbitrary 
structure and that then, at the compilahon 
stage, automatically wrote the necessary 
code for propagating evidence The Associ- 
ation for Uncertainty in Artificial Intelli- 
gence is a good starting point for explonng 
this area (http //www auaz orgo, while the 
Microsoft Research Decision Theory and 
Adaptive Systems group (http.//www 
research microsoft codresearcWdtg4 is 
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Figure 4. A Doodle for a model of growth patterns of rats. Each observation Y [ i , j I represents the j th weighing of 
the i t h  rat, where the rectangular plates depict repetitive structure as i goes from 1 to N, and j from 1 to T. 
Y [ i , j 1 depends stochastically on its mean mu [ i , j 1 and its measurement precision tau.  c, where the distribu- 
tional shape for this dependence i s  selected from a pull-down menu (in particular, allowing it to be non-Gaussian). 
mu [ i , j 1 is assumed to follow a linear-regression model depending on age x [ j I and parameterized by an intercept 
alpha [ i 1 and gradient beta [ i 1 : the double arrows represent a deterministic relationship. Each rat’s intercept 
and gradient are assumed to stochastically depend on some high-level parameters describing the whole population. 
Again, the precise stochastic relationship is specified from a menu, while the graph depicts the essential qualitative 
structure that drives the computationol algorithm. Additional parameters of interest, such as the error standard-devia- 
tion sigma, can be added us deterministic modes, allowing inferences to be made on arbitrary functions of parame- 
ters. The Doodle i s  created by a simple series of point-and-click operations, and then generates the code to make infer- 
ences about any unknown quantity in the model. 

particularly active in many aspects of 
Bayesian-network research. 

The relationship of Bayesian networks to 
other areas rapidly became apparent. Within 
genetics, pedigree analysis used similar 
representations and had developed similar 
computational algorithms; in engineering, 
filtering operations proved to have the same 
essential ingredients. Most important, be- 
cause for computational reasons Bayesian 
networks become reexpressed as Markov 
random fields, connections were made to 
statistical physics, the spatial analysis of 
images, and geographical epidemiology. 
Exact propagation algorithms were not fea- 
sible in these areas, so a range of approxi- 
mate methods were developed: in particu- 
lar, Markov chain Monte Carlo (MCMC) 
methods entered mainstream (Bayesian) 
statistical analysis in the early 1990s. The 
stage was set for the conceptual integration 
alluded to above.3 A very broad community 
is now working on probabilistic graphical 
models, which also now includes neural 
networks and coding problems. 

Code synthesis and BUGS 
So what has this to do with code synthe- 

sis? The unifying theme behind all these 
research areas is the decomposition of 
complex problems into smaller compo- 
nents, which communicate locally to make 
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global inferences. Hence, it is natural to 
have a graphical representation, a GUI for 
specifying structure, and a facility for auto- 
matically writing the code for carrying out 
the necessary inferences. In theory, users 
can assemble a basic set of components in 
whatever way they like that still provides a 
reasonably efficient and accurate analysis. 

Our BUGS project has attempted a step 
toward t h s  ultimate goal (http://www. 
mrc-bsu.cam.ac.uk/bugs/). BUGS stands for 
Bayesian inference using Gibbs sampling, 
revealing that the basic computational algo- 
rithm was initially a specific MCMC simu- 
lation method that is ideally suited to graph- 
ical models, in which all unknown quantities 
are repeatedly simulated from their “full 
conditional” distributions. Newer versions 
of BUGS have extended the MCMC reper- 
toire to include more general Metropolis 
sampling. The most recent version has a 
graphics editor (DoodleBUGS), which lets 
users constrnct directed acyclic graphs of 
arbitrary complexity through point-and- 
click operations and then use pull-down 
menus to select probability distributions on 
the links of that graph. Figure 4 shows an 
example of a Doodle. 

How BUGS works 
The BUGS system parses data structures 

underlying the graphical description of the 
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model in the DoodleBUGS 
editor into a tree form. It then 
traverses this tree and creates 
and wires together a series of 
objects to form a low-level 
representation of the Bayesian 
model (the graph layer). This is 
a compilation process: the 
Doodle is the “source code” 
and the wired objects the “exe- 
cutable code.” The wired ob- 
jects have methods and state 
variables that match the appro- 
priate statistical concepts, and each different 
class of object is implemented as a separate 
component and is only loaded if required. 
BUGS stores the component names and the 
model specification language’s syntax in a 
file, which it uses to parameterize the Doo- 
dleBUGS parser. A second layer of objects 
(the updater layer) carries out statistical in- 
ference using MCMC simulation, with each 
variant of the MCMC algorithm again imple- 
mented as a component. BUGS uses a dis- 
tributed rule base to choose which variant 
of MCMC to use for a particular simula- 
tion. The updater layer uses methods im- 
plemented in the graph layer and copies 
simulated values back down to this layer. 
A third layer of objects watches the graph 
layer and produces summaries of the simu- 
lated values on user demand. 

This software design is very flexible. 
Very general statistical models built out of 
standard building blocks can be analyzed, 
although we are now writing specialized 
components to handle special areas such as 
pharmacokinetics and spatial statistics. 
Once written, these components are on the 
same footing as those already existing, and 
new components can be added to the soft- 
ware at any time without any recompiling, 
indeed without any access to the source 
code. We used the Component Pascal lan- 
guage (conceptually very similar to Java) 
to write the software and used the Black- 
Box framework (http://www. oberon. ch) to 
implement a visual user in te r fa~e .~  

Who is BUGS for? 
We designed BUGS for a particular class 

of intermediate-level users. It is not suitable 
for people who want to fit standard regression 
models to data and can get by with a standard 
$500 statistics package. Neither is it suitable 
for cutting-edge researchers in MCMC tech- 
niques. However, a surprisingly large group 
of researchers want to use realistically com- 
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plex models for their particular problem, real- 
ize this will require nonstandard statistical 
methodology, yet are (very sensibly) loath 
to start writing their own code. BUGS lets 
them do fairly rapid prototyping and explore 
a range of model assumptions that would 
take a huge effort to program from scratch. 
The range of subject areas and associated 
models is unpredictable: users have been 
interested in predicting stock prices, model- 
ing prawn abundance off the Great Barrier 
Reef, and identifying geographical clusters 
of leukemia. 

BUGS is a natural extension of the suc- 
cessful expert system packages that imple- 
mented Bayesian networks, but the transi- 
tion from exact to Monte Carlo methods 
greatly widens its potential applicability. Its 
development has been an iterative process, 
driven in equal measure by the program- 
ming philosophy and the statistical objec- 
tives. It has been very exciting to see how 
well these have integrated. There are certain 
restrictions to the distributions that can be 
used and to the sampling algorithms, but 
these are due to necessary prioritization 
rather than essential incapacity. We can 
implement additional distributions as new 
low-level components, while also introduc- 
ing more flexible algorithms by making the 
higher level more “intelligent” at recogniz- 
ing appropriate model structures. 

Currently, the program’s biostatistical 
background is evident and, although we 
are adapting it to specific areas (pharmaco- 
kinetics and geographical epidemiology), it 
will not be the most efficient program for 
the huge range of problems that might be 
considered under the broad heading of com- 
plex stochastic systems. However, as the 
neural-network, engineering, social science, 
and other communities increasingly adopt 
the Bayesian graphical modeling language, 
we feel confident that the basic philosophy 
of component-based programming is the 

3 .  

4. 

5. 

6.  

7. 

correct one for developing flexible 
and incremental tools for analysis. 
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