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Abst rac t  

A major challenge for software engineering today is to improve the 
software production process. Nowadays, most software systems 
~re handcrafted, whde soltware project management is primarily 
based on tenuous conventions. Software engineering faces the 
challenge of replacing the conventional mode of operation by 
computer-based technology. This theme underlies the Software 
Engineering Institute that the DoD has established at Carnegie. 
Mellon University. Among the contributors to software 
development technology are ideas, such as object-oriented 
programming, hardware improvements related to personal 
workstations, and programming environments that provide 
integrated sets of tools for software development and project 
management. Facilities and tools are by themselves not sufficient 
tc achieve an order of magnitude improvement in the software 
production process. Future directions in software engineering 
must emphasize a constructive approach to the design of reusable 
software and to automatic generation of programs. We will briefly 
explore the promising technology that can be used to implement 
these ideas. 

1 In t roduct ion 
A major chalfonoe for the software engineering field is to bring 

about a radical improvement in the software production process 
• which is plagued toy low quulity and inflexibility of its products and 

serious overruns in terms of both cost and time. A decade ago, 
when software engi~eering first emerged as a separate sub- 
discipline, the initial focus w;~.*; mere on controlling the production 
process than o~ achieving a radical improvemer~t by changing the 
process. The result of this control view has been a number of 
substantial activities in areas such as measuring system 
performance and programmer productivity and developing 
techniques for program testing and symbolic debugging. Today's 
practice is still largely dominated by this control view and its 
ensuing analytic approach to improving software production. 

k¢lthough useful for better understanding of the software 
production process and suitable for finding gradual improvements, 
analytic tools of the kind mentioned above are generally not 
adequate to achieve an order of magnitude improvement in the 
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software production process. A radical improvement requires a 
constructive approach that changes the process itself instead of 
improving on existing practices. The purpose of this paper is to 
review the current events in software engineering that support this 
constructive approach and to explore future developments that may 
lead to a substantial improvement of the software production 
process. 

Current events that relate to software production are rooted in the 
short but dynamic history of software engineering. A brief analysis 
of the history is followed by a discussion of one of the major events 
in the area at the present time, which is the mechanization of the 
discipline into support systems arid tools that assist programmers in 
the application of software engineering techniques. The 
observation that tools and support systems are by themselves not 
sufficient to bring about a radical improvement in the software 
production process leads to an outlook on the future. The major 
ideas and concepts for achieving the desired radical improvement 
in software production are reusability and automation. The last part 
of tiffs paper is dedicated to a discussion of these subjects and 
shows how they can be applied in practice. It is the author's belief 
that the software production process can be improved substantially 
if we can steer the development of software engineering in the 
direction of reusability and automation. 

2 The Nature of So f tware  Engineering 
Engineering is the creation of mechanisms or objects that 

facilitate the achievement of a goal. Civil engineers build bridges 
for people to get to the other sides electrical engineers build radios 
for the purpose of broadcasting news and mu,~ical entertainment, 
programmers write do~tabase'systems for people to store and 
retrieve information. The .Oxford dictionary of the American 
Language stresses the fact that engineering is the application of 
scientific knowledge and the control of power to achieve the 
intended goal. The adjective "scientific" seems unnecessarily 
restrictive because experience and transfer of know-how are 
substantial factors in engineering without necessarily being 
scientific, ] 'he Romans, for instance, were able to build excellent 
bridges without the knowledge of Newton's Daws of classical 
mechanics. 

An interesting aspect of engineering is that the goal of an 
engineering endeavor may be to facilitate achieving some other 
goal. This is the idea of a tool. The mechanical engineer, for 
instance, may design a floating crane that is used by the civil 
engineer to build his bridge. The goal of tile mechanical engineer 
is not a particular bridge, but the process O f building bridges. The 
object he creates is not the beam that spans the river, but the tool 
that enables the civil engineer to put that beam in place. 

The task of the software engineer resembles that of the 
mechanical engineer in the example above. The subject matter of 
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software engineering is the means and methods that are applied to 
the creation of software and not the substance of the software 
product. A peculiar aspect of software engineering, however, is the 
fact that these means and methods are largely expressed in terms 
of software. Translated back to the example above, this state of 
affairs would correspond to a situation in which the mechanical 
engineer would choose to provide another bridge, instead of a 
floating crane, as the tool that would enable the civil engineer to 
build his bridge. The result is a recursive relationship where the 
tool to achieve the desired goal (the bridge that replaces the 
floating crane) is of the same nature as the ultimate goal (the bridge 
to be built by the civil engineer). An interesting consequence of this 
recursive relationship between tool and goal is that the means and 
methods invented for achieving the goal (the creation of software) 
are also applicable to the tools designed for achieving that goal (the 
software that supports the development of software). 

Engineering skills can often be judged by the quality of the 
resulting product. This is true for all forms of engineering, be it 
mechanical, electrical or software engineering. Examples of high 
and poor quality are known to all of us. What to say, for instance, of 
a text formatting program that allows the title of a section to go on 
the last line of a page while the text starts on the next page. 
Another example is the coin box of my car that is not wide enough 
for my hand but too deep for my thumb. It is not so easy to move a 
coin forward with one or two fingers and then catch it with your 
thumb. A particularly nasty example of poor engineering used to be 
in the electronic mail system at CMU when it was first introduced. 
The sender of a message was not notified of a misspelling in the 
address part until after invoking the send command. Instead of 
returning the undeliverable message, the mail system discarded the 
message and forced the sender to retype the entire text. Another 
example of questionable engineering is the operating system that 
does not let you get out when you type "logoff", but reacts with an 
error message that says, "Type Iogout to log off". 

Compilers are also notorious for the poor quality of error analysis 
and error reporting. Many compilers get confused after the 
detection of the first error and produce long lists of spurious 
messages because of failing to distinguish internally between a 
correct and an erroneous program state. An error detection that 
makes sense in the correct state may be irrelevant in the erroneous 
state in which preceding errors were found. 

Fartieularly frustrating are cryptic messages for which no further 
information is obtainable. When I switched to a new operating 
system environment, the system told me that I was using an 
outdated version and that I lacked the benefit of some substantial 
system improvements. It did not tell me, however, how I could get 
access to this improved version, and obvious procedures such as 
editing my Iogin-file did not work. Another frustrating example was 
my first encounter with an Ada compiler that claimed to provide a 
friendly user interface. Part of the program I had written was: 

with text_io; use text io; 
package body HELLO is 

procedu re sayhello is 
print ("hello there"); newline; 

end sayhello; 

end HELLO; 

The compiler indicated the print line as erroneous, listed an 
obscure number of five digits and announced that the result type 
did not match the type of a library subprogram. It seems rather 
difficult to derive the actual mistake, which is the spelling of 
new line as newline, from the text of the given error message. 

For software, there are some general criteria that distinguish a 
good design from a poor one and some specific criteria that 
depend on the specific nature of the software product. To begin 
with the latter, a banking system requires absolute accuracy of the 
numbers it moves around, while an electronic mailsystem can 
tolerate an occasional misspelling in the text of a message and, if it 
is smart, even in the address part of a message. Another example is 
the rigid response time requirement for a realtime system versus the 
tolerance of modest compile time delays for a timesharing system. 

Software engineering is particularly concerned with the general 
criteria that determine the quality of a design and of the resulting 
software product. Criteria frequently discussed in the literature are: 

Correctness the correspondence of specification, design 
and implementation 

Reliability the ability to reproduce a result 

Performance the ability to respond within tolerable time limits 
without excessive demands on storage capacity 

Adaptability the ability to modify software to take advantage 
of hardware improvements or to respond to 
changing application requirements 

Extensibility the ability to extend the functionality of a system 

Friendliness the ability to interact with the user in terms of 
understandable messages while not requiring 
irrelevant precision of user input 

Reusability the use of parts of a system in the design and 
implementation of another system 

Fault.Tolerance the protection of information integrity against 
hardware or power failure 

Robustness the protection of information integrity against 
unintentional user mistakes and malicious u~er 
acts 

Privacy/Security the protection of information against 
unauthorized access and against the effects of 
modification in someone else's data. 

The most important principle developed in the fields of software 
engineering and programming languages is that of modularity 
based on data encapsulation and data abstraction. The modularity 
concept allows us to control the interface to objects of a particular 
type by showing the specifications of basic operations that apply to 
these objects while hiding the particular implementation. Data 
encapsulation restricts all access to objects to the basic operations 
defined in the interface while data abstraction hides the internal 
object structure in addition to hiding the implementation of these 
basic operations. This form of modularity localizes the effect of 
implementation modifications which greatly enhances the quality of 
the software product along many of the criteria listed above. 

The purpose of this section has been to present a global image of 
software engineering and its major concerns. This presentation 
sets the tone for a brief characterization of software engineering's 
history and for a discussion of its current highlights and its future 
development. 

3 The Evolution of Sof tware  Engineering 
The foundation for software engineering was laid in the sixties 

with the invention and formulation of basic concepts in 
programming languages and operating systems. The design of 
FORTRAN which introduced the concept of procedural abstraction 
was soon followed by the design of Algol60 which introduced a 
wealth of new concepts including data types, parameter evaluation 
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modes, recursive procedures, static and dynamic scopes, dynamic 
data objects and a formal description of language syntax. Later in 
the decade, SIMULA67 introduced the concept of object-oriented 
programming through classes and subclasses, while Algol68 and 
Pascal introduced user defined data types, reference variables and 
disjunctive type structures. Much of the engineering during this 
period was concerned with the optimization of parsing and code 
generation and with the efficient use of hardware resources in 
timesharing operating systems. 

Around 1970, the focus of attention shifted from basic concepts in 
languages and systems and their implementation to the 
construction of systems out of program modules. Programmers 
became more ambitious and wanted to construct systems that were 
hard to express in a single program. At this point in time, the need 
arose for programming-in-the-large which concerns itself with 
program interface specifications, the modification process of 
program modules in the context of an evolving system,, and the 
interaction between programmers in the context of a software 
production project. This development had the effect that software 
engineering shifted its focus from the construction of individual 
programs to the process that controls the creation of software 
systems. 

The transition from pure programming-in-the-small to the more 
ambitious programming-in-the.large is viewed by many as the 
actual birth of software engineering. The distinction between these 
two forms of programming was clearly stated for the first time in a 
seminal paper by DeRemer and Kron [DK76]. Some of the most 
important initial results of software engineering were the modularity 
concept and Parnas' hiding principle [Pa72]. Other constructive 
work in software engineering of that period included the design of 
system version control and configuration management 
mechanisms. In addition, a substantial effort was put into 
measurements of performance and productivity as well as into 
models for controlling the software life cycle which includes the 
production process from inception and specification to 
implementation and successive releases. The waterfall model is the 
best known among the various models proposed for life cycle 
management [Le80]. 

An alternative approach to controlling the complexity of large 
software systems is taken by the founders of a programming 
methodology. Their activities give rise to the concept of structured 
programming [Di76] and to various approaches to program 
verification. Structured programming is in fact a philosophy based 
on the limitations of human beings in dealing witt} the substance of 
programs. It builds on our strengths (rather than our weaknesses) 
by promoting the utilization of three of our abilities in dealing with 
algorithms: enumeration, induction and abstraction. Enumeration 
allows us to distinguish between an overseeable number of cases; 
induction allows us to make use of iteration and recursion; 
abstraclion allows us to ignore details at proper moments and to 
reduce complexity by viewing collections of objects as atomic units. 

Program verification has been put on a solid basis in the last 
decade. The axiomatic approach is particularly suitable for proving 
the correclness of programs based on their control structure. 
Algebraic verification is particularly well suited for demonstrating 
the completeness and consistency of a collection of operations 
defined for an encapsulated data structure. The method of a 
denotational description of the semantics is particularly suitable for 
showing the consistency of a language design and for expressing 
the meaning and interpretation of language constructs. 

Although program verification is well understood, a major 
drawback of the state of the art is our inability to apply the various 
methods to large systems. The attempts in that direction have 
resulted in some interesting interactive verification systems [Go75, 

Lu79] that can handle small to medium size programs but not large 
systems consisting of many components that are not always 
collectively available. 

The state of the art in program verification at the end of the last 
decade was one of the causes for another change in the direction 
of software engineering leading to the exploration of software 
development tools and environments. Two other causes were the 
ana.lytic approach to improving the software production process 
and the labor-intensive implementation of life cycle support. The 
analytic approach blocked further progress because of the tacit 
assumption that the software production process was basically well 
organized and needed only further local optimization. The labor- 
intensive approach to life cycle support puts system development 
and project management entirely in the hands of people with little 
or no support from software technology. In the next section, we 
discuss the resulting events of the present that are characterized by 
a mechanization ot life cycle support into integrated programming 
environments. 

4 Programming env i ronments  
A programming environment is a software system that supports 

the development and maintenance of software products. The term 
"programming environment" does not refer so much to the activity 
of writing programs, but more to the manipulation of programs for 
the pwpose of system generation, configuration and version 
control, project management and documentation. Althougl; the 
term "system development environment" is actually more 
appropriate in this context, we will stay with tradition and stick to 
the widely used term "programming environment" to denote 
systems that support the entire spectrum of activities involving 
software production. The goal is for programming environments to 
support the entire life cycle and not just the programming fraction 
of lhe cycle. 

Traditional programming environments lack some properties that 
seem very desirable in modern programming environments. These 
properties are tool integration and uniformity of the user interface. 
Tools are integrated when they possess common knowledge that 
can be applied in each tool. This common knowledge often takes 
the form of shared data formats or of information stored in a 
common database. An example of tool integration is the 
combination of editor, compiler and debugger that all operate on a 
common syntax tree. The editor shares syntactic knowledge with 
the compiler and is able to enforce the syntax rules while a program 
is being written. The debugger shares program structure 
knowledge with the compiler and is able to translate problems back 
into source representation through the common database. Tool 
integration is of great help to create environments that are more 
specifically task.oriented than the traditional general-purpose 
environments which are still most common today. 

Tool integration is almost totally lacking in the traditional 
programming environment. Tools such as the text editor, the 
compiler, the linking.loader ned the debugger share at best some 
knowledge of the underlying file system. No information is shared, 
however, about data formats or data values and no information is 
exchanged through a common database. All communication 
between traditional tools takes place through input/output, while 
correctness of the representation is entirely in the eye of the 
beholder (not in the toolt). A text file is a Pascal program, for 
instance, because the author believes it is one, not because the text 
editor checked that it really is. 

Uniformity of the interlace is obtained by using the same 
command formats and parameter • conventions for all tools, In 
modern programming environments, uniformity of the interface is 
obtained by default through the general editing environment that 
controls all interactions between user and programming 
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environment. This arrangement has the additional advantage that 
the user may not always have to know which tool is being applied. 
Traditional environments often do not provide a uniform interface. 
Users have to remember for each tool a particular command syntax, 
a parameter convention and the interpretation of various switches. 
In contrast to the traditional environment, uniformity of the interface 
matches well with the image of a task-oriented programming 
environment that provides a collection of cooperating tools 
designed to assist a user in various complementary subtasks of a 
project. 

Programming environments can be categorized by the basic 
philosophy underlying their design. We distinguish four categories. 
A first category consists of the language extension environments. 
The design of these environments starts out with a particular 
programming language. Making a programming language the 
cornerstone of your design leads naturally to environments that 
emphasize programming-in.the-small, but don't support 
programming.in-the-large. Examples ot language environments 
that have that characteristic are Interlisp [Te781, Smalltalk [Go83] 
and Gnome (for Pascal) [Ga84]. Several designers of language 
extension environments realized soo~ enough th;~t (tealing with 
modular interfaces, version control, con|iguration management , 
etc., is often more intricate than writing programs. Since 
programming languages provide little or no support for daaling will] 
system-building issues, the natural slep is to extend the language 
environment with a collection of tools for programming-in-the-large. 
Exarnples of language environments of this kind are Cedar (for 
Mesa) [Sw85], Lillith (for Modula2) tWiSt ], Toolpack (for FORTRAN) 
[Os83], APSE (for Ada) [Bu80] and the Gandalf Prototype (for C) 
[No85]. 

A second category of programming environments is the group of 
life cycle support systems. These systems focus primarily on 
system version control and/or  project management. Emphasis of 
these systems is on documentation of the specifications, of the 
modifications and of the development history. Features frequently 
added are automatic recompilation, access control and 
propagation of changes. Most of the systems in this category are 
built as an extension of an available file or database system. Some 
examples of such environments are CADES [Sn80], PWB [Do77] 
and DSEE [Le84]. 

A third category of programming environments is the class of 
task-oriented environments. In this category, emphasis is on the 
integration of tools to assist the users in performing a specific task. 
The idea of integration is tightly connected to the useful idea of 
putting knowledge about the task to be performed in the tools and 
in the programming environment. The origin of this category of 
environments is in the concept of syntax.directed editors which 
later evolved into structure editors. The first system of this• kind is 
the Emily system [Ha71]. The idea of tool integration, starting with 
editors, was later extended to other tools such as interpreters, 
debuggers and documentation support. A major breakthrough in 
this area was the partial automation of generating these 
environments. This addition is so important because the desire to 
build task-specific environments creates the need for a large 
number of slightly different programming environments. The task 
orientation makes sense only if specific environments "can be 
generated fairly easily. It would not work if every task.oriented 
environment had to be constructed from scratch and took an 
amount of time comparable to that of writing a handcrafted 
compiler. Some well.known environments in this category are the 
Program Synthesizer [Te81, RT84], the Gandalf System [Ha83, 
No85], Mentor [DOS0, Ka82], POE [Fi84], SYNED [Ga83] and 
PECAN IRe84]. 

A fourth category is formed by environments that support a 

particular system design methodology. These environments 
provide support tools for designing software according to certain 
rules that are based on a ~ottware development philosophy. 
Popular methodologies primarily used in i~dustry are those by 
Jackson [Ja75] and Yourdon [Yo75]. An environment based on a 
specification methodology is HOS [HZ83]. 

The first category is distinct from the other three in that each 
member of that category provides a single language environment 
and supports only that specific language. Another typical 
characteristic of this category is that its members are by and large 
single user environments in contrast to the e~}vironments in the 
other categories that are more oriented towards team work. A 
common characteristic of the first, second and fourth categories is 
that their products are all handcrafted and are therefore fairly hard 
to modify. It is relatively difficult to adapt these environments to the 
specific wishes of their users. Task-oriented environments, which 
form the third category, escape this limitation by the generic 
approach that early on has been recognized by their designers as 
being crucial to satisfying the need for constructing many variations 
of a task-oriented environment. An additional advantage of the 
generic approach is that a particular software design philosophy 
does not have to be hardwired into the environment as it has to in 
the environments of all three other categories. Further discussion 
of the generic approach follows when the topics of reusability and 
automation are addressed. 

Programming environments for software development serve three 
main purposes: 

• to support the programming task 

• to control the system construction task 

• to assist in project management 

Environments of the programming language extension category 
initially provide most of their support for the programming task 
which corresponds to programming-in-the-small. In terms of 
programmers and program modules, one might characterize the 
programming task as one-to-one: the individual programmer is 
working on a single program at a time. 

Environments of the life cycle category tend to stress the system 
construction task, leaving the support of the programming task to 
the traditional too~s such as text editor, compiler, debugger and file 
system. The sy,.~tem construction task is commonly viewed as 
programming-in-the-large. This is the one-to-many situation where 
an individual programmer assembles a version of his program 
module, with modules written by other programmers, into a system 
version. 

Project management adds a new dimension to the software 
development process, often labeled "programming-in-the.many". 
The purpose of project management is to control the interaction of 
programmers and their rights to access and modify programs. 
Project management facilities enforce design and development 
rules, but also provide information on current status, development 
history and future goals. Project management is poorly supported 
by most programming environments. The environments of the 
software development and methodology categories may support 
project status information but are usually not designed to enforce a 
set of coherent project management rules. This form of control is 
generally left to costly human labor. The category of task-oriented 
environment is the most promising with respect to supporting 
project management because of its generic approach which allows 
the implementation of a variety of policies that can serve specific 
needs. The task of project management puts us in the many-to- 
many situation where the main issue is to control the actions of 
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programmers who work together on program modules in various 
states of completion. 

The work on programming environments is a constructive 
response to the challenge of solving the software production 
problem. The development started out with environments that 
provided useful tools to support various programming tasks. The 
current state of the art of generating programming environments is 
able to handle the syntactic issues of structure, formatting and 
representation, and also the semantic issues of static consistency, 
runtime support and dynamic modifications [Re82, Ka85]. 

We are at a stage where environments can be built that have more 
the character of an assistant than of a tool box. These 
environments provide an integrated set of task.oriented tools that 
complement the work of the people involved in software 
production. Another useful task these assistant-type environments 
can perform is to enforce desirable project management rules and 
maintain a development history. The future is in environments that 
show intelligent behavior. In addition to maintaining correctness of 
a software product during all stages of its development, such 
environments are designed to make value judgements about the 
quality of the product and its components. These future 
environments will display knowledge about the software production 
process similar to what has already been accomplished today by 
designers of special purpose expert systems. 

5 The So f tware  Engineer ing Inst i tu te 
Reports published in the literature and presented at conferences 

show that there are serious problems in the software production 
process which have a negative effect on the resulting software 
product. Part of the problem is caused by the difficulty of changing 
the process to make use of modern technology. Although new 
equipment and new tools exist, it is often hard to change 
established methods and hard to integrate new methods into an 
existing organization. 

Rethinking the way large software systems are produced and 
maintained has been of great concern to the Office of the Under 
Secretary of Defense for Research and Engineering (OUSDRE). 
This office has undertaken a major effort to alleviate software- 
related problems in the military directly, by standardization of 
proven tools and techniques, and indirectly, by stimulating research 
and development of software engineering techniques. OUSDRE 
has eslablished a special program for this purpose, known as the 
"Software Initiative". This program has three major components: 
the Ada Joint Program Office (AJPO), the STARS program 
(Software Technology for Adaptable, Reliable Systems. not to be 
confused with the Strategic Defense Initiative, commonly known as 
Starwars) and the Software Engineering Institute. The task of the 
AJPO is to promote the use of the new Ada rM~ language and 
encourage the development of Ada related tools and standards, 
The STARS program consists of six task forces that prepare 
requests for proposals in a variety of areas such as software 
engineering environments, development methodologies, business 
applications, software metrics, etc. 

The Software Engineering Institute (SEI) was established at 
Carnegie-Mellon University in December, 1984. The Institute is one 
of four institutes in the university structure and has the status of a 
college. It is planned to grow to 250 technical people over a period 
of five years. As of November, 1985, the Institute has just over 
seventy employees. 

The purpose of the SEI is to accelerate technology transition in 
order to improve the software production process and its resulting 
products [Ba85]. The plans call for close interaction with the DoD 
and its software suppliers on the one hand and with the research 
laboratories in industry and academia on the other hand. The main 

task of the SEI is to make existing advanced technology ready for 
transition into the user environment. The SEI plans to do this 
through building prototype and demonstration systems and by 
providing training services. An industrial affiliates program has 
been established for the purpose of sharing the SErs expertise with 
DoD contractors and organizing joint projects. It is the intention 
that industry will turn the SEI's prototypes into useful, marketable 
products. 

The SEI has produced a one and five year plan that describes the 
spectrum of activities in the software engineering field that is of 
immediate relevance to its mission. The plans call for six areas of 
interest addressing both the software production process and the 
resulting product. The six areas are: 

Technology Identification and Assessment 
find promising advanced technology that is 
ready for transition 

The Nature of the Transition Process 
find ways to make new technology attractive 
and viable for the production environment 

Education design, with universities and industry, software 
engineering course material at the master 
degree level 

Reusability and Automation 
build software as a variation of existing software 
rather than from scratch 

System Construction and Evolution 
integrated environments that support the 
software development and maintenance 
process 

Reasoning about Software 
quality and performance control of the software 
product. 

Work in these areas is organized in the form of projects that 
concentrate on topics such as the evaluation of existing Ada 
environments, the legal issues of software licensing and general 
software development tools. Intermediate results of the projects 
are presented and demonstrated regularly at open house meetings 
to which representatives of DoD contractors, government agencies 
and universities are invited. One of the projects takes the form of a 
series of workshops in which a gradually increasing number of 
attendees discuss the issues of software production. A summary of 
these discussions will be available as an SEI tech report in the 
summer of 1986. 

6 Reusability and Automation 
Programming environments, software metrics and software 

engineering methodologies are helpful, but not enough to bring 
about an order of magnitude improvement in the quality of our 
software products and in the predictability of the production cost 
and effort. Constructive and analytic techniques are both valuable 
and should be further pursued to facilitate the software production 
process. However, one must expect no more than a gradual 
improvement from applying these techniques, because none of 
them necessarily changes the software production process itself, 

It seems that a major problem in software production is the fact 
that most software is written from scratch. The reasons why this is 
common practice are threefold. 

• programs are hard to read 

1Ada is a registered trademark of the US Government 
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• programs are strongly tied to their context 

• information on existence of programs is often hard to 
get. 

The f.~cf |hat the meaning of a program is hard to derive from the 
source code gives programmers the feeling that one might as well 
write the ~rogram from scratch instead of trying to understand the 
designer's reasoning behind an existing program text. Although 
des~dp!ivt~, document~dion is of some help, its two major drawbacks 
are its separation hem the source text and its lack of rules that 
guarantee uniformily and completeness. Formal specifications are 
in fact far more ho!pful for an accurate description of what a 
program does, but 3re generally even harder to understand than 
tl;e source text. A possible solution to this problem is to agree on a 
functional description of programs that does not describe in detail 
what a program does, but describes the data structures it uses, the 
input values it accepts and the output values it produces [He78]. 

After going through the effort of understanding someone else's 
program, good intentions are often rewarded with disappointment 
becc~use of the program's dependency on the runtime environment. 
Even if a program is designed to run on a popular operating system 
such as UNIX rM2, the programmer who wants to make use of it in 
his environment will discover that the Program does not run 
because of incompatible peripheral equipment or local operating 
system extensions. Context dependencies are often hard to detect 
because documentation on these matters is rarely provided. A 
programming language such as Ada may alleviate this problem 
because of its precise description of package dependencies. 
Explicit description of a program's dependency on other programs 
is strongly recommended over implicit dependencies that are 
generated by deep nesting of scopes and by an excessive use of 
global objects. 

It is often very hard to find out which programs written by other 
peopJe can be used again. Many programs are designed as system 
modules and are bu~:ied deep down in a system description. Names 
of program modules often make little sense outside of the system 
context, while the purpo.~e of a program usually is described in 
relation to the modules it interacts with instead of in terms of its own 
independent functionality. The result is that a design always seems 
unnecessarily complicated to an outsider. This phenomenon 
causes the outsider to think that he could have done a better job 
than the designer of the existing program. This lack of coTffidence 
in your fellow programmer is a major cause of unnecessary 
duplication of effort. 

The problem of acquiring information about the existence of 
programs is solved in part by encouraging the pote~tial user to try 
harder to find out what is available and how it is used. However, 
this is not a reasonable proposition witttout counting on substantial 
help from the original designer, The onty way that one can 
realistically hope that people will try to reuse software is to demand 

that designers of original programs take reusability into account 
from the start. If reusability is adopted as an original design 
objective, one may expect a program documentation style to 
emerge that clearly explains a program's independent functionality, 
its intended use and its dependency on its context. 

A programming environment can play an importan;: role in making 
software reusable. It can provide tacilities that allow users to 
browse through libraries that describe existing programs and their 
usage. The better programming environment will provide, in 
addition, an engineering environment that is used for transforming 
an existing program into one needed for a specific application, or 
for deriving a specific program from a general description. 

Reuse of software is at this point in time our best hope for 
improving the software production process and its resulting 
product. It has the potential of reducing the cost and effort of the 
process and it has a good chance of increasing reliability through 
incremental modifications of programs of proven quality. However, 
the preceding discussion shows that the term reusability must not 
be given the narrow interpretation of reusing existing programs 
without change, In fact, reusability spans a spectrum of 
applications that each makes sense in a particular context. 

Two direct applications of reusability are the use of program 
libraries and of shared code. The best example of reused program 
libraries is that of mathematical subroutines. The IEEE Society has 
done us a good service by standardizing a set of mathematical 
routines, including specifications of input/output precision. It 
would be extremely helpful if similar standard packages were 
designed and maintained for string processing, window 
management and namespace management. The Ada language 
made a useful contribution by including in the language a standard 
package for file handling and for text I/O. 

Users of timesharing operating systems are very familiar with the 
idea of sharing code. Their programs routinely use common 
operating system facilities for file handling, input/output and 
memory management. It is in this context immaterial whether or not 
executable versions of code are shared. Even if programs each use 
their own copy of a common program, the fact that counts is that 
the utility program was not written by the user, but taken, as is, from 
an available pool. 

Practice has shown that reusability through code sharing is 
greatly facilitated by eliminating the context dependency factor. 
This can be done in one of two ways: either by writing a program 
that is independent of its context (this is basically t h e  Ada 
Language approach), or by having the various users work in the 
same context so that context dependencies are irrelevant. 
Although the latter seems to be a cop out, its usefulness has been 
firmly established by the success of the UNIX operating system, 
The reason why many companies are interested in standardizing on 
UNIX, as universities basically have done over the last decade, is to 
capitalize on the available software that runs on UNIX while 
avoiding the problems o| having to translate and rewrite existing 
programs to run on different operating systems. 

The Aria language provides another form of reusability through 
type abstraction [Ad83]. Generic packages can be written in Ada 
that specify the traversal and updating operations on data 
structures while leaving the element type unspecified. This facility 
supports the concept of reusability by allowing a programmer to 
define the details of a data structure once and for all, independent 
of what type of objects will be stored in that structure. A generic 
package for queues, for instance, can be instantiated for messages, 
for jobs, for arrival and departure schedules, etc. 

Other practical forms of reusability are through specification and 
through common design. An example of the former is contained in 
the large volume of literature on data structures [e.g. Kn73J in 
which sorting algorithms take much of the limelight. The algorithms 
dealing with the manipulation of these structures are specified 
independent of a particular programming language, but in sufficient 
detail to be implemented in any language. Examples of common 
design are found in the literature on operating systems [Ha76] and 
compilers [Ah77]. Memory management and parsing techniques 
are the typical examples of common design that is applied in many 
operating systems and compilers. Although this form of reusability 
has the drawback of requiring implementation, it has the great 

2UNIX is a trademark of Bell Laboratories 
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advantage of building on a conceptual basis that can be taught in 
the classroom. 

Reusability can be greatly enhanced by automation of the 
program generation process. Automation in this context means 
using tools that translate a precise program specification into a 
program form for which a compiler or interpreter exists. The 
automation tools are commonly known as generator programs, or 
generators for short. The input of a generator is a program 
description and its output is a program in a programming language 
or in some other form that can be translated into machine code. 
The target of a generator might for example be intermediate code 
as generated by the front-end of a compiler. This intermediate 
code is then translated into machine code by the code generator 
part of a compilsr [Ca80]. The idea of a generator was first 
proposed for compilers in the form of a compiler-compiler [Br62]. 

Reusability and automation can be very effective when applied to 
the design of a family of systems that have a large part in common. 
Examples of such families are database management systems, 
compilers and programming environments. The kind of facilities 
which members of a system family typically have in common are the 
facilities for database or file management, for input/output and for 
maintaining the user interface. 

r i le  common facilities are basically used unchanged by all 
members of a system family. Slight differences may be expressed 
iJ) parameters or system generation switches. The additional 
system-specific part, however, is what distinguishes one family 
member from another. Here, automation comes into play: program 
generators translate a designer's description that is written in a 
predefined formalism into a collection of compilable (or 
interpretable) programs and data. A scheme for generating 
systems is depicted below: 

Description 
of System 
S p e c i f i c  

Pa r t  

I Program 
Generators 

. • 1  Programs f o r  
the  System 

S p e c i f i c  Pa r t  

Conmlon 

F a c i l i t i e s  

Compiler \J ( 
ttnker /J  System 

The designer describes the specific behavior of the target system 
by defining the objects that the user will be able to create, 
manipulate and delete in that target system. The designer's 
description consists of three parts: 

the abstract syntax 
describing the logical structure of the objects in 
the target system and how they are composed 

the concrete syntax 
describing the representation of objects in the 
target system in user-readable form 

the runtime support 
describing the actions that must be taken at 
runtime for purposes such as checking 
semantics, resource allocation or project 
management. 

The use of these descriptions is best illustrated by an example. 
Suppose the target system is an electronic mail system. Typical 
objects in a maitsystem are messages, mailboxes and bulletin 
boards. The common facilities provide general operations for 
creating, deleting and browsing through objects in the target 
system. Specific are the structtr:es of messages, mailboxes and 
bulletin boards. A message, for instance, is composed of more 
primitive objects such as a date, an address and a text. The 

abstract syntax describes lhis logical :;tructure of messages, as it 
also dee:3 for maUboxes and bulletin boards. The concrete syntax 
describes the outpul format of these objects in order that the user 
carl read messages and see mailboxes and bulleth] boards. The 
runtime support description defines how the specilic objects use 
the common facilities such, as memor3t or output wiudc>ws, what 
upd0tir~g is needed when objects are created or deleted and what 
kind of consistency rules or access control applies to the objects in 
the target system. 

Reusability may even apply to the system-specific part. It is not 
uncomrnon that system family members provide just slightly 
different operations on the objects in the target system. This 
commonality can be captured in a library of specific facilities 
available to the designer for copying or slight modification. This 
idea has been successfully applied in the design of many task- 
oriented programming environments that were mentioned earlier. 

Automation of the abstract and concrete syntax is not difficult to 
achieve since designing formalisms for the description of syntax 
has been well understood for more than two decades. Automation 
of the runtime support, however, is far more difficult because most 
of the runtime support consists of active procedures that play the 
role of watchdogs for the objects they are attached to. Writing 
runtime support in a traditional programming language is an 
acceptable alternative if automation is lacking, because it still 
requires only a small part of the code to be written from scratch. Of 
course, if automation of the runtime support is not achievable, the 
existence of a library of standard runtime support routines becomes 
all the more important. 

7 Conclusion 
The main objective of software engineering is to help produce 

high quality software systems within reasonable bounds of time and 
cost. The major factors that determine the quality of a software 
product in addition to its desired functionality are reliability, 
performance, flexibility and friendliness of the user interface. 
Software engineering is right now facing the challenge of solving 
the serious problems encountered in the software production 
process which lead to cost and time overruns and products that are 
lacking in many of the quality factors. 

Tools most frequently used for improving the software production 
process are program measurement and software development 
support tools. Measurement tools are helpful in finding the 
bottlenecks in the existing software production methodology. 
Support tools are helpful in alleviating the task of the people 
involved the production process. Both kinds of tools help to make 
the production process more effective and more reliable. The 
original design of isolated support tools is gradually being replaced 
by integrated programming environments that behave more as 
intelligent assistants than as toolboxes. 

Measurements and support tools are designed to correct flaws in 
an existing methodology, but do not address the more fundamental 
question of methodology itself, There is a general feeling Ihat 
current practices are inadequate (and will become more so in the 
near future) to satisfy the growing demand for reliable soltware that 
is produced on time and within budget. The basic flaw.,~ of the 
current process are its labor.intensive approach to project 
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management and product development and its propensity for 
programming from scratch. 

It seems that a significant improvement can be achieved if we can 
produce reusable software and automate the generation of new 
software. Success in the area of reusability may reduce the 
production of new software to a fraction of what is commonly 
written today, while automation has the potential of simplifying the 
production process with an additional gain in reliability. 

Reusability has no chance of being successful unless taken into 
account as a major design objective from the start. A major 
obstacle to overcome is the problem of information dissemination. 
With current software production practices, it is extremely difficult 
to find out what is available and how things work. Time is ripe for a 
major effort to define the concept of reusable software precisely 
and to develop techniques for creating reusable software. 
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