
Technological Advances in Software Engineering

A. N. Habermann
Computer Science Department and

Software Engineering Institute
Carnegie-Mellon University

Pittsburgh, PA 15213

Abst rac t

A major challenge for software engineering today is to improve the
software production process. Nowadays, most software systems
~re handcrafted, whde soltware project management is primarily
based on tenuous conventions. Software engineering faces the
challenge of replacing the conventional mode of operation by
computer-based technology. This theme underlies the Software
Engineering Institute that the DoD has established at Carnegie.
Mellon University. Among the contributors to software
development technology are ideas, such as object-oriented
programming, hardware improvements related to personal
workstations, and programming environments that provide
integrated sets of tools for software development and project
management. Facilities and tools are by themselves not sufficient
tc achieve an order of magnitude improvement in the software
production process. Future directions in software engineering
must emphasize a constructive approach to the design of reusable
software and to automatic generation of programs. We will briefly
explore the promising technology that can be used to implement
these ideas.

1 In t roduct ion
A major chalfonoe for the software engineering field is to bring

about a radical improvement in the software production process
• which is plagued toy low quulity and inflexibility of its products and

serious overruns in terms of both cost and time. A decade ago,
when software engi~eering first emerged as a separate sub-
discipline, the initial focus w;~.*; mere on controlling the production
process than o~ achieving a radical improvemer~t by changing the
process. The result of this control view has been a number of
substantial activities in areas such as measuring system
performance and programmer productivity and developing
techniques for program testing and symbolic debugging. Today's
practice is still largely dominated by this control view and its
ensuing analytic approach to improving software production.

k¢lthough useful for better understanding of the software
production process and suitable for finding gradual improvements,
analytic tools of the kind mentioned above are generally not
adequate to achieve an order of magnitude improvement in the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM-0-89791 - 177-6/86/0002/0029 $00.75

software production process. A radical improvement requires a
constructive approach that changes the process itself instead of
improving on existing practices. The purpose of this paper is to
review the current events in software engineering that support this
constructive approach and to explore future developments that may
lead to a substantial improvement of the software production
process.

Current events that relate to software production are rooted in the
short but dynamic history of software engineering. A brief analysis
of the history is followed by a discussion of one of the major events
in the area at the present time, which is the mechanization of the
discipline into support systems arid tools that assist programmers in
the application of software engineering techniques. The
observation that tools and support systems are by themselves not
sufficient to bring about a radical improvement in the software
production process leads to an outlook on the future. The major
ideas and concepts for achieving the desired radical improvement
in software production are reusability and automation. The last part
of tiffs paper is dedicated to a discussion of these subjects and
shows how they can be applied in practice. It is the author's belief
that the software production process can be improved substantially
if we can steer the development of software engineering in the
direction of reusability and automation.

2 The Nature of So f tware Engineering
Engineering is the creation of mechanisms or objects that

facilitate the achievement of a goal. Civil engineers build bridges
for people to get to the other sides electrical engineers build radios
for the purpose of broadcasting news and mu,~ical entertainment,
programmers write do~tabase'systems for people to store and
retrieve information. The .Oxford dictionary of the American
Language stresses the fact that engineering is the application of
scientific knowledge and the control of power to achieve the
intended goal. The adjective "scientific" seems unnecessarily
restrictive because experience and transfer of know-how are
substantial factors in engineering without necessarily being
scientific,] 'he Romans, for instance, were able to build excellent
bridges without the knowledge of Newton's Daws of classical
mechanics.

An interesting aspect of engineering is that the goal of an
engineering endeavor may be to facilitate achieving some other
goal. This is the idea of a tool. The mechanical engineer, for
instance, may design a floating crane that is used by the civil
engineer to build his bridge. The goal of tile mechanical engineer
is not a particular bridge, but the process O f building bridges. The
object he creates is not the beam that spans the river, but the tool
that enables the civil engineer to put that beam in place.

The task of the software engineer resembles that of the
mechanical engineer in the example above. The subject matter of

29

software engineering is the means and methods that are applied to
the creation of software and not the substance of the software
product. A peculiar aspect of software engineering, however, is the
fact that these means and methods are largely expressed in terms
of software. Translated back to the example above, this state of
affairs would correspond to a situation in which the mechanical
engineer would choose to provide another bridge, instead of a
floating crane, as the tool that would enable the civil engineer to
build his bridge. The result is a recursive relationship where the
tool to achieve the desired goal (the bridge that replaces the
floating crane) is of the same nature as the ultimate goal (the bridge
to be built by the civil engineer). An interesting consequence of this
recursive relationship between tool and goal is that the means and
methods invented for achieving the goal (the creation of software)
are also applicable to the tools designed for achieving that goal (the
software that supports the development of software).

Engineering skills can often be judged by the quality of the
resulting product. This is true for all forms of engineering, be it
mechanical, electrical or software engineering. Examples of high
and poor quality are known to all of us. What to say, for instance, of
a text formatting program that allows the title of a section to go on
the last line of a page while the text starts on the next page.
Another example is the coin box of my car that is not wide enough
for my hand but too deep for my thumb. It is not so easy to move a
coin forward with one or two fingers and then catch it with your
thumb. A particularly nasty example of poor engineering used to be
in the electronic mail system at CMU when it was first introduced.
The sender of a message was not notified of a misspelling in the
address part until after invoking the send command. Instead of
returning the undeliverable message, the mail system discarded the
message and forced the sender to retype the entire text. Another
example of questionable engineering is the operating system that
does not let you get out when you type "logoff", but reacts with an
error message that says, "Type Iogout to log off".

Compilers are also notorious for the poor quality of error analysis
and error reporting. Many compilers get confused after the
detection of the first error and produce long lists of spurious
messages because of failing to distinguish internally between a
correct and an erroneous program state. An error detection that
makes sense in the correct state may be irrelevant in the erroneous
state in which preceding errors were found.

Fartieularly frustrating are cryptic messages for which no further
information is obtainable. When I switched to a new operating
system environment, the system told me that I was using an
outdated version and that I lacked the benefit of some substantial
system improvements. It did not tell me, however, how I could get
access to this improved version, and obvious procedures such as
editing my Iogin-file did not work. Another frustrating example was
my first encounter with an Ada compiler that claimed to provide a
friendly user interface. Part of the program I had written was:

with text_io; use text io;
package body HELLO is

procedu re sayhello is
print ("hello there"); newline;

end sayhello;

end HELLO;

The compiler indicated the print line as erroneous, listed an
obscure number of five digits and announced that the result type
did not match the type of a library subprogram. It seems rather
difficult to derive the actual mistake, which is the spelling of
new line as newline, from the text of the given error message.

For software, there are some general criteria that distinguish a
good design from a poor one and some specific criteria that
depend on the specific nature of the software product. To begin
with the latter, a banking system requires absolute accuracy of the
numbers it moves around, while an electronic mailsystem can
tolerate an occasional misspelling in the text of a message and, if it
is smart, even in the address part of a message. Another example is
the rigid response time requirement for a realtime system versus the
tolerance of modest compile time delays for a timesharing system.

Software engineering is particularly concerned with the general
criteria that determine the quality of a design and of the resulting
software product. Criteria frequently discussed in the literature are:

Correctness the correspondence of specification, design
and implementation

Reliability the ability to reproduce a result

Performance the ability to respond within tolerable time limits
without excessive demands on storage capacity

Adaptability the ability to modify software to take advantage
of hardware improvements or to respond to
changing application requirements

Extensibility the ability to extend the functionality of a system

Friendliness the ability to interact with the user in terms of
understandable messages while not requiring
irrelevant precision of user input

Reusability the use of parts of a system in the design and
implementation of another system

Fault.Tolerance the protection of information integrity against
hardware or power failure

Robustness the protection of information integrity against
unintentional user mistakes and malicious u~er
acts

Privacy/Security the protection of information against
unauthorized access and against the effects of
modification in someone else's data.

The most important principle developed in the fields of software
engineering and programming languages is that of modularity
based on data encapsulation and data abstraction. The modularity
concept allows us to control the interface to objects of a particular
type by showing the specifications of basic operations that apply to
these objects while hiding the particular implementation. Data
encapsulation restricts all access to objects to the basic operations
defined in the interface while data abstraction hides the internal
object structure in addition to hiding the implementation of these
basic operations. This form of modularity localizes the effect of
implementation modifications which greatly enhances the quality of
the software product along many of the criteria listed above.

The purpose of this section has been to present a global image of
software engineering and its major concerns. This presentation
sets the tone for a brief characterization of software engineering's
history and for a discussion of its current highlights and its future
development.

3 The Evolution of Sof tware Engineering
The foundation for software engineering was laid in the sixties

with the invention and formulation of basic concepts in
programming languages and operating systems. The design of
FORTRAN which introduced the concept of procedural abstraction
was soon followed by the design of Algol60 which introduced a
wealth of new concepts including data types, parameter evaluation

30

modes, recursive procedures, static and dynamic scopes, dynamic
data objects and a formal description of language syntax. Later in
the decade, SIMULA67 introduced the concept of object-oriented
programming through classes and subclasses, while Algol68 and
Pascal introduced user defined data types, reference variables and
disjunctive type structures. Much of the engineering during this
period was concerned with the optimization of parsing and code
generation and with the efficient use of hardware resources in
timesharing operating systems.

Around 1970, the focus of attention shifted from basic concepts in
languages and systems and their implementation to the
construction of systems out of program modules. Programmers
became more ambitious and wanted to construct systems that were
hard to express in a single program. At this point in time, the need
arose for programming-in-the-large which concerns itself with
program interface specifications, the modification process of
program modules in the context of an evolving system,, and the
interaction between programmers in the context of a software
production project. This development had the effect that software
engineering shifted its focus from the construction of individual
programs to the process that controls the creation of software
systems.

The transition from pure programming-in-the-small to the more
ambitious programming-in-the.large is viewed by many as the
actual birth of software engineering. The distinction between these
two forms of programming was clearly stated for the first time in a
seminal paper by DeRemer and Kron [DK76]. Some of the most
important initial results of software engineering were the modularity
concept and Parnas' hiding principle [Pa72]. Other constructive
work in software engineering of that period included the design of
system version control and configuration management
mechanisms. In addition, a substantial effort was put into
measurements of performance and productivity as well as into
models for controlling the software life cycle which includes the
production process from inception and specification to
implementation and successive releases. The waterfall model is the
best known among the various models proposed for life cycle
management [Le80].

An alternative approach to controlling the complexity of large
software systems is taken by the founders of a programming
methodology. Their activities give rise to the concept of structured
programming [Di76] and to various approaches to program
verification. Structured programming is in fact a philosophy based
on the limitations of human beings in dealing witt} the substance of
programs. It builds on our strengths (rather than our weaknesses)
by promoting the utilization of three of our abilities in dealing with
algorithms: enumeration, induction and abstraction. Enumeration
allows us to distinguish between an overseeable number of cases;
induction allows us to make use of iteration and recursion;
abstraclion allows us to ignore details at proper moments and to
reduce complexity by viewing collections of objects as atomic units.

Program verification has been put on a solid basis in the last
decade. The axiomatic approach is particularly suitable for proving
the correclness of programs based on their control structure.
Algebraic verification is particularly well suited for demonstrating
the completeness and consistency of a collection of operations
defined for an encapsulated data structure. The method of a
denotational description of the semantics is particularly suitable for
showing the consistency of a language design and for expressing
the meaning and interpretation of language constructs.

Although program verification is well understood, a major
drawback of the state of the art is our inability to apply the various
methods to large systems. The attempts in that direction have
resulted in some interesting interactive verification systems [Go75,

Lu79] that can handle small to medium size programs but not large
systems consisting of many components that are not always
collectively available.

The state of the art in program verification at the end of the last
decade was one of the causes for another change in the direction
of software engineering leading to the exploration of software
development tools and environments. Two other causes were the
ana.lytic approach to improving the software production process
and the labor-intensive implementation of life cycle support. The
analytic approach blocked further progress because of the tacit
assumption that the software production process was basically well
organized and needed only further local optimization. The labor-
intensive approach to life cycle support puts system development
and project management entirely in the hands of people with little
or no support from software technology. In the next section, we
discuss the resulting events of the present that are characterized by
a mechanization ot life cycle support into integrated programming
environments.

4 Programming env i ronments
A programming environment is a software system that supports

the development and maintenance of software products. The term
"programming environment" does not refer so much to the activity
of writing programs, but more to the manipulation of programs for
the pwpose of system generation, configuration and version
control, project management and documentation. Althougl; the
term "system development environment" is actually more
appropriate in this context, we will stay with tradition and stick to
the widely used term "programming environment" to denote
systems that support the entire spectrum of activities involving
software production. The goal is for programming environments to
support the entire life cycle and not just the programming fraction
of lhe cycle.

Traditional programming environments lack some properties that
seem very desirable in modern programming environments. These
properties are tool integration and uniformity of the user interface.
Tools are integrated when they possess common knowledge that
can be applied in each tool. This common knowledge often takes
the form of shared data formats or of information stored in a
common database. An example of tool integration is the
combination of editor, compiler and debugger that all operate on a
common syntax tree. The editor shares syntactic knowledge with
the compiler and is able to enforce the syntax rules while a program
is being written. The debugger shares program structure
knowledge with the compiler and is able to translate problems back
into source representation through the common database. Tool
integration is of great help to create environments that are more
specifically task.oriented than the traditional general-purpose
environments which are still most common today.

Tool integration is almost totally lacking in the traditional
programming environment. Tools such as the text editor, the
compiler, the linking.loader ned the debugger share at best some
knowledge of the underlying file system. No information is shared,
however, about data formats or data values and no information is
exchanged through a common database. All communication
between traditional tools takes place through input/output, while
correctness of the representation is entirely in the eye of the
beholder (not in the toolt). A text file is a Pascal program, for
instance, because the author believes it is one, not because the text
editor checked that it really is.

Uniformity of the interlace is obtained by using the same
command formats and parameter • conventions for all tools, In
modern programming environments, uniformity of the interface is
obtained by default through the general editing environment that
controls all interactions between user and programming

31

environment. This arrangement has the additional advantage that
the user may not always have to know which tool is being applied.
Traditional environments often do not provide a uniform interface.
Users have to remember for each tool a particular command syntax,
a parameter convention and the interpretation of various switches.
In contrast to the traditional environment, uniformity of the interface
matches well with the image of a task-oriented programming
environment that provides a collection of cooperating tools
designed to assist a user in various complementary subtasks of a
project.

Programming environments can be categorized by the basic
philosophy underlying their design. We distinguish four categories.
A first category consists of the language extension environments.
The design of these environments starts out with a particular
programming language. Making a programming language the
cornerstone of your design leads naturally to environments that
emphasize programming-in.the-small, but don't support
programming.in-the-large. Examples ot language environments
that have that characteristic are Interlisp [Te781, Smalltalk [Go83]
and Gnome (for Pascal) [Ga84]. Several designers of language
extension environments realized soo~ enough th;~t (tealing with
modular interfaces, version control, con|iguration management ,
etc., is often more intricate than writing programs. Since
programming languages provide little or no support for daaling will]
system-building issues, the natural slep is to extend the language
environment with a collection of tools for programming-in-the-large.
Exarnples of language environments of this kind are Cedar (for
Mesa) [Sw85], Lillith (for Modula2) tWiSt], Toolpack (for FORTRAN)
[Os83], APSE (for Ada) [Bu80] and the Gandalf Prototype (for C)
[No85].

A second category of programming environments is the group of
life cycle support systems. These systems focus primarily on
system version control and/or project management. Emphasis of
these systems is on documentation of the specifications, of the
modifications and of the development history. Features frequently
added are automatic recompilation, access control and
propagation of changes. Most of the systems in this category are
built as an extension of an available file or database system. Some
examples of such environments are CADES [Sn80], PWB [Do77]
and DSEE [Le84].

A third category of programming environments is the class of
task-oriented environments. In this category, emphasis is on the
integration of tools to assist the users in performing a specific task.
The idea of integration is tightly connected to the useful idea of
putting knowledge about the task to be performed in the tools and
in the programming environment. The origin of this category of
environments is in the concept of syntax.directed editors which
later evolved into structure editors. The first system of this• kind is
the Emily system [Ha71]. The idea of tool integration, starting with
editors, was later extended to other tools such as interpreters,
debuggers and documentation support. A major breakthrough in
this area was the partial automation of generating these
environments. This addition is so important because the desire to
build task-specific environments creates the need for a large
number of slightly different programming environments. The task
orientation makes sense only if specific environments "can be
generated fairly easily. It would not work if every task.oriented
environment had to be constructed from scratch and took an
amount of time comparable to that of writing a handcrafted
compiler. Some well.known environments in this category are the
Program Synthesizer [Te81, RT84], the Gandalf System [Ha83,
No85], Mentor [DOS0, Ka82], POE [Fi84], SYNED [Ga83] and
PECAN IRe84].

A fourth category is formed by environments that support a

particular system design methodology. These environments
provide support tools for designing software according to certain
rules that are based on a ~ottware development philosophy.
Popular methodologies primarily used in i~dustry are those by
Jackson [Ja75] and Yourdon [Yo75]. An environment based on a
specification methodology is HOS [HZ83].

The first category is distinct from the other three in that each
member of that category provides a single language environment
and supports only that specific language. Another typical
characteristic of this category is that its members are by and large
single user environments in contrast to the e~}vironments in the
other categories that are more oriented towards team work. A
common characteristic of the first, second and fourth categories is
that their products are all handcrafted and are therefore fairly hard
to modify. It is relatively difficult to adapt these environments to the
specific wishes of their users. Task-oriented environments, which
form the third category, escape this limitation by the generic
approach that early on has been recognized by their designers as
being crucial to satisfying the need for constructing many variations
of a task-oriented environment. An additional advantage of the
generic approach is that a particular software design philosophy
does not have to be hardwired into the environment as it has to in
the environments of all three other categories. Further discussion
of the generic approach follows when the topics of reusability and
automation are addressed.

Programming environments for software development serve three
main purposes:

• to support the programming task

• to control the system construction task

• to assist in project management

Environments of the programming language extension category
initially provide most of their support for the programming task
which corresponds to programming-in-the-small. In terms of
programmers and program modules, one might characterize the
programming task as one-to-one: the individual programmer is
working on a single program at a time.

Environments of the life cycle category tend to stress the system
construction task, leaving the support of the programming task to
the traditional too~s such as text editor, compiler, debugger and file
system. The sy,.~tem construction task is commonly viewed as
programming-in-the-large. This is the one-to-many situation where
an individual programmer assembles a version of his program
module, with modules written by other programmers, into a system
version.

Project management adds a new dimension to the software
development process, often labeled "programming-in-the.many".
The purpose of project management is to control the interaction of
programmers and their rights to access and modify programs.
Project management facilities enforce design and development
rules, but also provide information on current status, development
history and future goals. Project management is poorly supported
by most programming environments. The environments of the
software development and methodology categories may support
project status information but are usually not designed to enforce a
set of coherent project management rules. This form of control is
generally left to costly human labor. The category of task-oriented
environment is the most promising with respect to supporting
project management because of its generic approach which allows
the implementation of a variety of policies that can serve specific
needs. The task of project management puts us in the many-to-
many situation where the main issue is to control the actions of

32

programmers who work together on program modules in various
states of completion.

The work on programming environments is a constructive
response to the challenge of solving the software production
problem. The development started out with environments that
provided useful tools to support various programming tasks. The
current state of the art of generating programming environments is
able to handle the syntactic issues of structure, formatting and
representation, and also the semantic issues of static consistency,
runtime support and dynamic modifications [Re82, Ka85].

We are at a stage where environments can be built that have more
the character of an assistant than of a tool box. These
environments provide an integrated set of task.oriented tools that
complement the work of the people involved in software
production. Another useful task these assistant-type environments
can perform is to enforce desirable project management rules and
maintain a development history. The future is in environments that
show intelligent behavior. In addition to maintaining correctness of
a software product during all stages of its development, such
environments are designed to make value judgements about the
quality of the product and its components. These future
environments will display knowledge about the software production
process similar to what has already been accomplished today by
designers of special purpose expert systems.

5 The So f tware Engineer ing Inst i tu te
Reports published in the literature and presented at conferences

show that there are serious problems in the software production
process which have a negative effect on the resulting software
product. Part of the problem is caused by the difficulty of changing
the process to make use of modern technology. Although new
equipment and new tools exist, it is often hard to change
established methods and hard to integrate new methods into an
existing organization.

Rethinking the way large software systems are produced and
maintained has been of great concern to the Office of the Under
Secretary of Defense for Research and Engineering (OUSDRE).
This office has undertaken a major effort to alleviate software-
related problems in the military directly, by standardization of
proven tools and techniques, and indirectly, by stimulating research
and development of software engineering techniques. OUSDRE
has eslablished a special program for this purpose, known as the
"Software Initiative". This program has three major components:
the Ada Joint Program Office (AJPO), the STARS program
(Software Technology for Adaptable, Reliable Systems. not to be
confused with the Strategic Defense Initiative, commonly known as
Starwars) and the Software Engineering Institute. The task of the
AJPO is to promote the use of the new Ada rM~ language and
encourage the development of Ada related tools and standards,
The STARS program consists of six task forces that prepare
requests for proposals in a variety of areas such as software
engineering environments, development methodologies, business
applications, software metrics, etc.

The Software Engineering Institute (SEI) was established at
Carnegie-Mellon University in December, 1984. The Institute is one
of four institutes in the university structure and has the status of a
college. It is planned to grow to 250 technical people over a period
of five years. As of November, 1985, the Institute has just over
seventy employees.

The purpose of the SEI is to accelerate technology transition in
order to improve the software production process and its resulting
products [Ba85]. The plans call for close interaction with the DoD
and its software suppliers on the one hand and with the research
laboratories in industry and academia on the other hand. The main

task of the SEI is to make existing advanced technology ready for
transition into the user environment. The SEI plans to do this
through building prototype and demonstration systems and by
providing training services. An industrial affiliates program has
been established for the purpose of sharing the SErs expertise with
DoD contractors and organizing joint projects. It is the intention
that industry will turn the SEI's prototypes into useful, marketable
products.

The SEI has produced a one and five year plan that describes the
spectrum of activities in the software engineering field that is of
immediate relevance to its mission. The plans call for six areas of
interest addressing both the software production process and the
resulting product. The six areas are:

Technology Identification and Assessment
find promising advanced technology that is
ready for transition

The Nature of the Transition Process
find ways to make new technology attractive
and viable for the production environment

Education design, with universities and industry, software
engineering course material at the master
degree level

Reusability and Automation
build software as a variation of existing software
rather than from scratch

System Construction and Evolution
integrated environments that support the
software development and maintenance
process

Reasoning about Software
quality and performance control of the software
product.

Work in these areas is organized in the form of projects that
concentrate on topics such as the evaluation of existing Ada
environments, the legal issues of software licensing and general
software development tools. Intermediate results of the projects
are presented and demonstrated regularly at open house meetings
to which representatives of DoD contractors, government agencies
and universities are invited. One of the projects takes the form of a
series of workshops in which a gradually increasing number of
attendees discuss the issues of software production. A summary of
these discussions will be available as an SEI tech report in the
summer of 1986.

6 Reusability and Automation
Programming environments, software metrics and software

engineering methodologies are helpful, but not enough to bring
about an order of magnitude improvement in the quality of our
software products and in the predictability of the production cost
and effort. Constructive and analytic techniques are both valuable
and should be further pursued to facilitate the software production
process. However, one must expect no more than a gradual
improvement from applying these techniques, because none of
them necessarily changes the software production process itself,

It seems that a major problem in software production is the fact
that most software is written from scratch. The reasons why this is
common practice are threefold.

• programs are hard to read

1Ada is a registered trademark of the US Government

33

~_~ ~= ~-..~.~:'~..~. ~ . ; . ~ ~ ~ , .~ •~.~,=.~.~ ~ = ~ ¢ ~ ~ ~.~:~.~. ;~.~.~ ~=~ : .~.~. ~ i ~ . _~=~ ~

• programs are strongly tied to their context

• information on existence of programs is often hard to
get.

The f.~cf |hat the meaning of a program is hard to derive from the
source code gives programmers the feeling that one might as well
write the ~rogram from scratch instead of trying to understand the
designer's reasoning behind an existing program text. Although
des~dp!ivt~, document~dion is of some help, its two major drawbacks
are its separation hem the source text and its lack of rules that
guarantee uniformily and completeness. Formal specifications are
in fact far more ho!pful for an accurate description of what a
program does, but 3re generally even harder to understand than
tl;e source text. A possible solution to this problem is to agree on a
functional description of programs that does not describe in detail
what a program does, but describes the data structures it uses, the
input values it accepts and the output values it produces [He78].

After going through the effort of understanding someone else's
program, good intentions are often rewarded with disappointment
becc~use of the program's dependency on the runtime environment.
Even if a program is designed to run on a popular operating system
such as UNIX rM2, the programmer who wants to make use of it in
his environment will discover that the Program does not run
because of incompatible peripheral equipment or local operating
system extensions. Context dependencies are often hard to detect
because documentation on these matters is rarely provided. A
programming language such as Ada may alleviate this problem
because of its precise description of package dependencies.
Explicit description of a program's dependency on other programs
is strongly recommended over implicit dependencies that are
generated by deep nesting of scopes and by an excessive use of
global objects.

It is often very hard to find out which programs written by other
peopJe can be used again. Many programs are designed as system
modules and are bu~:ied deep down in a system description. Names
of program modules often make little sense outside of the system
context, while the purpo.~e of a program usually is described in
relation to the modules it interacts with instead of in terms of its own
independent functionality. The result is that a design always seems
unnecessarily complicated to an outsider. This phenomenon
causes the outsider to think that he could have done a better job
than the designer of the existing program. This lack of coTffidence
in your fellow programmer is a major cause of unnecessary
duplication of effort.

The problem of acquiring information about the existence of
programs is solved in part by encouraging the pote~tial user to try
harder to find out what is available and how it is used. However,
this is not a reasonable proposition witttout counting on substantial
help from the original designer, The onty way that one can
realistically hope that people will try to reuse software is to demand

that designers of original programs take reusability into account
from the start. If reusability is adopted as an original design
objective, one may expect a program documentation style to
emerge that clearly explains a program's independent functionality,
its intended use and its dependency on its context.

A programming environment can play an importan;: role in making
software reusable. It can provide tacilities that allow users to
browse through libraries that describe existing programs and their
usage. The better programming environment will provide, in
addition, an engineering environment that is used for transforming
an existing program into one needed for a specific application, or
for deriving a specific program from a general description.

Reuse of software is at this point in time our best hope for
improving the software production process and its resulting
product. It has the potential of reducing the cost and effort of the
process and it has a good chance of increasing reliability through
incremental modifications of programs of proven quality. However,
the preceding discussion shows that the term reusability must not
be given the narrow interpretation of reusing existing programs
without change, In fact, reusability spans a spectrum of
applications that each makes sense in a particular context.

Two direct applications of reusability are the use of program
libraries and of shared code. The best example of reused program
libraries is that of mathematical subroutines. The IEEE Society has
done us a good service by standardizing a set of mathematical
routines, including specifications of input/output precision. It
would be extremely helpful if similar standard packages were
designed and maintained for string processing, window
management and namespace management. The Ada language
made a useful contribution by including in the language a standard
package for file handling and for text I/O.

Users of timesharing operating systems are very familiar with the
idea of sharing code. Their programs routinely use common
operating system facilities for file handling, input/output and
memory management. It is in this context immaterial whether or not
executable versions of code are shared. Even if programs each use
their own copy of a common program, the fact that counts is that
the utility program was not written by the user, but taken, as is, from
an available pool.

Practice has shown that reusability through code sharing is
greatly facilitated by eliminating the context dependency factor.
This can be done in one of two ways: either by writing a program
that is independent of its context (this is basically t h e Ada
Language approach), or by having the various users work in the
same context so that context dependencies are irrelevant.
Although the latter seems to be a cop out, its usefulness has been
firmly established by the success of the UNIX operating system,
The reason why many companies are interested in standardizing on
UNIX, as universities basically have done over the last decade, is to
capitalize on the available software that runs on UNIX while
avoiding the problems o| having to translate and rewrite existing
programs to run on different operating systems.

The Aria language provides another form of reusability through
type abstraction [Ad83]. Generic packages can be written in Ada
that specify the traversal and updating operations on data
structures while leaving the element type unspecified. This facility
supports the concept of reusability by allowing a programmer to
define the details of a data structure once and for all, independent
of what type of objects will be stored in that structure. A generic
package for queues, for instance, can be instantiated for messages,
for jobs, for arrival and departure schedules, etc.

Other practical forms of reusability are through specification and
through common design. An example of the former is contained in
the large volume of literature on data structures [e.g. Kn73J in
which sorting algorithms take much of the limelight. The algorithms
dealing with the manipulation of these structures are specified
independent of a particular programming language, but in sufficient
detail to be implemented in any language. Examples of common
design are found in the literature on operating systems [Ha76] and
compilers [Ah77]. Memory management and parsing techniques
are the typical examples of common design that is applied in many
operating systems and compilers. Although this form of reusability
has the drawback of requiring implementation, it has the great

2UNIX is a trademark of Bell Laboratories

34

. . . . L.

advantage of building on a conceptual basis that can be taught in
the classroom.

Reusability can be greatly enhanced by automation of the
program generation process. Automation in this context means
using tools that translate a precise program specification into a
program form for which a compiler or interpreter exists. The
automation tools are commonly known as generator programs, or
generators for short. The input of a generator is a program
description and its output is a program in a programming language
or in some other form that can be translated into machine code.
The target of a generator might for example be intermediate code
as generated by the front-end of a compiler. This intermediate
code is then translated into machine code by the code generator
part of a compilsr [Ca80]. The idea of a generator was first
proposed for compilers in the form of a compiler-compiler [Br62].

Reusability and automation can be very effective when applied to
the design of a family of systems that have a large part in common.
Examples of such families are database management systems,
compilers and programming environments. The kind of facilities
which members of a system family typically have in common are the
facilities for database or file management, for input/output and for
maintaining the user interface.

r i le common facilities are basically used unchanged by all
members of a system family. Slight differences may be expressed
iJ) parameters or system generation switches. The additional
system-specific part, however, is what distinguishes one family
member from another. Here, automation comes into play: program
generators translate a designer's description that is written in a
predefined formalism into a collection of compilable (or
interpretable) programs and data. A scheme for generating
systems is depicted below:

Description
of System
S p e c i f i c

Pa r t

I Program
Generators

. • 1 Programs f o r
the System

S p e c i f i c Pa r t

Conmlon

F a c i l i t i e s

Compiler \J (
ttnker /J System

The designer describes the specific behavior of the target system
by defining the objects that the user will be able to create,
manipulate and delete in that target system. The designer's
description consists of three parts:

the abstract syntax
describing the logical structure of the objects in
the target system and how they are composed

the concrete syntax
describing the representation of objects in the
target system in user-readable form

the runtime support
describing the actions that must be taken at
runtime for purposes such as checking
semantics, resource allocation or project
management.

The use of these descriptions is best illustrated by an example.
Suppose the target system is an electronic mail system. Typical
objects in a maitsystem are messages, mailboxes and bulletin
boards. The common facilities provide general operations for
creating, deleting and browsing through objects in the target
system. Specific are the structtr:es of messages, mailboxes and
bulletin boards. A message, for instance, is composed of more
primitive objects such as a date, an address and a text. The

abstract syntax describes lhis logical :;tructure of messages, as it
also dee:3 for maUboxes and bulletin boards. The concrete syntax
describes the outpul format of these objects in order that the user
carl read messages and see mailboxes and bulleth] boards. The
runtime support description defines how the specilic objects use
the common facilities such, as memor3t or output wiudc>ws, what
upd0tir~g is needed when objects are created or deleted and what
kind of consistency rules or access control applies to the objects in
the target system.

Reusability may even apply to the system-specific part. It is not
uncomrnon that system family members provide just slightly
different operations on the objects in the target system. This
commonality can be captured in a library of specific facilities
available to the designer for copying or slight modification. This
idea has been successfully applied in the design of many task-
oriented programming environments that were mentioned earlier.

Automation of the abstract and concrete syntax is not difficult to
achieve since designing formalisms for the description of syntax
has been well understood for more than two decades. Automation
of the runtime support, however, is far more difficult because most
of the runtime support consists of active procedures that play the
role of watchdogs for the objects they are attached to. Writing
runtime support in a traditional programming language is an
acceptable alternative if automation is lacking, because it still
requires only a small part of the code to be written from scratch. Of
course, if automation of the runtime support is not achievable, the
existence of a library of standard runtime support routines becomes
all the more important.

7 Conclusion
The main objective of software engineering is to help produce

high quality software systems within reasonable bounds of time and
cost. The major factors that determine the quality of a software
product in addition to its desired functionality are reliability,
performance, flexibility and friendliness of the user interface.
Software engineering is right now facing the challenge of solving
the serious problems encountered in the software production
process which lead to cost and time overruns and products that are
lacking in many of the quality factors.

Tools most frequently used for improving the software production
process are program measurement and software development
support tools. Measurement tools are helpful in finding the
bottlenecks in the existing software production methodology.
Support tools are helpful in alleviating the task of the people
involved the production process. Both kinds of tools help to make
the production process more effective and more reliable. The
original design of isolated support tools is gradually being replaced
by integrated programming environments that behave more as
intelligent assistants than as toolboxes.

Measurements and support tools are designed to correct flaws in
an existing methodology, but do not address the more fundamental
question of methodology itself, There is a general feeling Ihat
current practices are inadequate (and will become more so in the
near future) to satisfy the growing demand for reliable soltware that
is produced on time and within budget. The basic flaw.,~ of the
current process are its labor.intensive approach to project

35

.~ :~_~._~z.: ~ L ~ .~.~ ~.:_~.~:C : ~-/'~'~ Z~...L~.;/L~..~...~.~._ . ~ . ~...~i J_.~._:.~.W~ ~

management and product development and its propensity for
programming from scratch.

It seems that a significant improvement can be achieved if we can
produce reusable software and automate the generation of new
software. Success in the area of reusability may reduce the
production of new software to a fraction of what is commonly
written today, while automation has the potential of simplifying the
production process with an additional gain in reliability.

Reusability has no chance of being successful unless taken into
account as a major design objective from the start. A major
obstacle to overcome is the problem of information dissemination.
With current software production practices, it is extremely difficult
to find out what is available and how things work. Time is ripe for a
major effort to define the concept of reusable software precisely
and to develop techniques for creating reusable software.

Refe r e n c e s

[Ad83] Reference Manual for the Ada Programming Language.
United States Department of Defense, January 1983.

[Ah77] Aho, A. V. and J. UIIman.
Principles of Compiler Design.
Addison Wesley, 1977.

[Ba85] Barbacci, M. R.; A. N. Habermann; M. Shaw.
The Software Engineering Institute: Bridging Practice
and Potential.
IEEE Software [2], 6. November 1975.

[Br62] Brooker, R. A. and D. Morris,
A General Translation Program for Phrase Structure
Languages.
Journal of the ACM 9, pp. 1-10, 1962.

[Bu80] Buxton, J. N.
Requirements for Ada Programming Support
Environments (Stoneman).
US Government, Department of Defense, February
1980.

[Ca80] Cattell, R. G. G.
Automatic Derivations of Cede Generators from
Machine Descriptions.
Transactions on Programming Languages and
Systems, VoI. 2, 2, April 1980.

[Di76] Dijkstra, E. W.
A Discipfine of Programming.
Prentice Hall, Englewood Cliffs, New York, 1976.

[Dk76] DeRemer, F. and H. Kron.
Programming-in-the-Large Versus Programming.in.the.
Small.
/EEE Transactions Software Engineering [2], 2, June
1976.

[Do77] Dolotta, T. A. and R. C. Haight.
PWB/UNIX-.(Overview and Synopsis of Facilities)
Technical Report, Bell Laboratories, June 1977.

[Do80] Donzean Gouge, V. et el.
Programming Environments Based on Structure
Editors: the Mentor Experience.
INRIA Rapports de Recherche, No. 26, July 1980.

[Fi84]

[Ga83]

[Ga84]

[Go75]

[Go83]

[Ha71]

[Ha76]

[Ha83]

[He78]

[HZa3]

[Ja75]

[Ka82]

[Ka85]

Fischer, C. N. et al.
The POE Language-Based Editor Project.
Proceedings of the SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software
Development Environments, April 1984.

Gansner, E. R. et al.
A Language.Based Editor for an Interactive
Programming Environment.
Proceedings, IEEE-Compcon83, San Francisco, Calif.,
February 198,3.

Garlan, David and P. Miller.
GNOME: An Introductory Programming Environment
Based on a Family of Structure Editors.
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software
Development Environments, April 1984.

Good, D. I.; R. L. London; W. W. Blesdoe.
An Interactive Program Verification System.
Sigplan Notices, June 1975.

Goldberg, A. and D. Robson.
Smalltalk-80: The Language and its Implementation.
Addison & Wesley, Reading, Mass., 1983.

Hansen, W. J.
Creation of Hierarchic Text with a Computer Display.
Ph.D. Thesis, Stanford Univeristy, June 1971.

Habermann, A. N.
Introduction to Operating System Design.
Science Research Associates, Inc., Chicago, Pelo Alto,
Toronto, 1976.

Habermann, A. Nico and D. Notkin.
The Gandalf Software Development Environment.
Proceedings of the Second International Symposium on
Computation and Information, Monterrey, Mexico,
September 1983.

Heninger, J., D. L. Parnas et el.
Software Requirements for the A-TE Aircraft.
Naval Research Lab., Washington, D.C., Memo Rep.
3876, November 1978.

Hamilton, M. and S. S. Zeldin.
The Functional Lifecycle Model and Its Automation:
USE.IT.
Journal of Systems and Software, VoI. 3, No. 1, March
198,3.

Jackson, M.
Principles of Program Design.
Academic Press, 1975.

Kahn, G. et al.
Metal.. A Formalism to Specify Formalisms.
Technical Report, INRIA (1982).

Kaiser, El. E.
Semantics for Structure Editing Environments
Ph.D. Dissertation, Carnegie-Mellon University, 1985.

36

[Kn73]

[Le8O]

[Le84]

[Lu79]

[No85}

[os83]

[Pa72]

IRe82]

[Re84]

[RT84]

[Sn80]

[Sw85]

Knuth, D.
The Art of Computer Programming, Volume IIh Sorting
and Searching.
Addison-Wesley, Reading, Mass., 1973.

Lehman, M. M.
On Understanding Laws, Evolution and Conversation in
the Large-Program Life Cycle.
The Journal of Systems and Software 1, 3 (1980).

Leblang, D. B. and R. P. Chase, Jr.
Computer.Aided Software Engineering in a Distributed
Workstation Environment.
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software
Development Environments. Pittsburgh, Pa., April
1984.

Luckham, D. C. et al.
The Stanford Pascal Verifier User Manual.
Stanford University, Stanford, Calif., March 1979.

Notkin, D. S.
The GANDALF Project.
The Journal of Systems and Software, [5], 2. May 1985.

Osterweil, L. J.
Toolpack - An Experimental Software Development
Environment Research Project.
/EEE Transactions on Software Engineering,
pp. 673-685, November 1983.

Parnas, D. L.
On Criteria to Be Used in Decomposing Systems into
Modules.
CA CM, December 1972.

Reps, T. W.
Generating Language-Base Environments.
Ph.D. Dissertation, Cornell University, 1982.

Reiss, S.
Graphical Program Development with PECAN Program
Development Systems.
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software
Development Environments, April 1984.

Reps, T. W. and R. Teitelbaum.
The Synthesizer Generator.
Proceedings ACM/SIGSOFT Software Engineering
Symposium on Software Development Environments,
Pittsburgh, Pa., April 1984.

Snowdon, R. A.
An Experienced.Based Assessment of Development
Systems.
Software Development Tools, pp. 64-75t
Springer Verlag, Berlin, Heidelberg, New York, 1980.

Sweet, R. E.
The Mesa Programming Environment.
Proceedings, ACM SIGPLAN85 Symposium on
Language Issues in Programming Environments,
Seattle, Washington, 1985.

[Te78]

[Te81]

[Wi81]

[Yo75]

Teitelman, W. et al.
The Interlisp Reference Manual.
Xerox Palo Alto Research Center, Palo Alto, Calif.,
1978.

Teitelbaum, T. and T. Reps.
The Cornell Program Synthesiser: A Syntax.Directed
Programming Environment.
CACM, September 1981.

Wirth, N. and R. Ohran.
Lilith. A Personal Computer for Software Engineering.
Proceedings, 5th International Conference on Software
Engineering, San Diego, Calif., March 1981.

Yourdon, E.
Techniques of Program Structure and Design.
Prentice.Hall, 1975.

3?

. .; •-4: :~'.~..~.~: ~ ~ ~:~..~:~.~ •

