Software Engineering
with Objects and Components

Open Issues and Course Summary
Massimo Felici
Room 1402, JCMB, KB
0131 650 5899
mfelici@inf.ed.ac.uk

Software Engineering with Objects and Components

= Is software engineering with objects and
components a good way of building systems?

= Software development process

- Lifecycle models and main stages
* Process management

- Testing

* Maintenance and Evolution

= Introduction to UML Diagrams

Use cases
- Class models
+ CRC cards
* Interaction diagrams
- State diagrams
* Implementation diagrams

= Reuse and components
= Dependable systems

SEOC1 Lecture Note 19 2

Software Engineering with Objects and Components

= Why are we doing this?

» To build "good systems”
* What are good systems?
- Why do we need them?

= Why a unified language?
= A unified language should be (and UML is?)

- Expressive

- Easy to use

* Unambiguous

» Tool supported
+ Widely used

SEOC1 Lecture Note 19

Software Engineering with Objects and Components

= Development process

= (Unified?) design
meThodology

Risk management is central
Iteration to control risk
Architecture-centric and
component-based

Workflows

Business Modeling
Requirements

Pros: dependable,
assessment, standards

Cons: constraints,
overheads, generality

Unlfled modellmg language
combines pros while avoudmg
cons

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

= The unified process

SEOC1

Inception,
Cons r-uc‘hon Transition

There are many other
rocesses (e.g., Spiral,
xtreme Programming, etc.)

Lecture Note 19

(Rational) Unified Process - RUP

Phases
| Inception|| Elaboration || Construction

” Transition |

__.___—_
....—..;__—-.....-...._...-_-—_‘.‘

o o] [| [H |

Iterations

UML: Status and Issues

* History:

1989-1994 OO0 "method wars”
1994-1995 three Amigos and birth of UML
Oct 1996 feedback invited on UML 0.9

Jan 1997 UML 1.0 submitted as RFP (Request for Proposal) to
OMG (Object Management Group)

Jun 1999 UML 1.3 released

Sep 2000 (some UML 2.0 RFP's submitted

Feb 2001 UML 1.4 draft specification released
Current version UML 1.5;

OMG is currently upgrading to UML 2.0. Adopted in late 2003 and
posted on OMG's website labeled "UML 2.0 Final Adopted
Specification", the upgraded version won't replace UML 1.5 as the
official "Available UML Specification" until it completes its initial
maintenance revision sometime around the end of 2004

= Open issues

SEOC1

UML semantics
Tool support
OCL (Object Constraint Language)

Lecture Note 19 5

Requirements Capture

= Users have different potentially conflicting
views of the system

= Users usually fail to express requirements
clearly

» Missing information
» Superfluous and redundant information
» Inaccurate information

= Users are poor at imagining what a system
will be like

= Tdentifying all the work needing support by
the system is difficult

SEOC1 Lecture Note 19 6

Static Structures

= Desirable to build system quickly and cheaply

= Desirable to make system easy to maintain and
modify

= Identifying classes

* Data driven design
- Responsibility driven design
» Use case driven design
- Design by contract
= Class diagrams document: classes (attributes,
operations) and associations (multiplicities,

generalisations)

= System is some collection of objects in class model

SEOC1 Lecture Note 19 7

Validating the Class Model

= CRC Cards: class, responsibility and
collaborators

= UML interaction diagrams
= CRC cards and quality

»+ Too many responsibilities implies low cohesion
» Too many collaborators implies high coupling

= CRC cards used to

» Validate class model, using role play
* Record changes
+ Identify opportunities to refactor

SEOC1 Lecture Note 19

Interactions

= Collaboration and sequence diagrams

- documents how classes realize use cases
* thus, help to validate design

= Other uses: design patterns, component use,
packages

= Instance versus generic

= Procedural versus concurrent

= Law of Demeter

= Creation and deletion of objects
= timing

SEOC1 Lecture Note 19 9

Other UML Diagrams...

= Describing object behaviour

- State diagrams
- Activity diagrams

= Tmplementation diagrams

-+ Component diagrams
* Deployment diagrams

SEOC1 Lecture Note 19

10

Other Software Engineering Issues

= Testing
- Testing strategies: ftop-down versus bottom-up,
black-box versus glass-box, stress testing
- Categories (unit, integration, acceptance)
* Regression testing
+ Test plans
»+ OO and component issues

= Reuse and components

- Ty]Pe of reuse: Knowledge (artifact, patterns),
software (code, inheritance, template, component,
framework)

success stories, pitfalls and difficulties with
(component) reuse

* Reuse not free and requires management
SEOC1 Lecture Note 19 11

What else did we do?

Maintenance and Evolution

. A]g]gouTnTs for significant part of project costs and developer
effor
Types: corrective, adaptive, perfective, preventive
.1s hard, requires management,...

Dealmg with legacy code: r'edevelop transform (restructure,
re-engineer, récapture), encapsulate

Software Quality

* Lots of scary stories...

- Software engineering borrows heavily from traditional
engineering

. Al’rhough software is significantly different
* Focus on process rather than product
* More complex and less visible
* Fails in different ways
» Is far more subject to change

SEOC1 Lecture Note 19 12

Lecture Notes

SEOC1 Overview
Requirements Engineering
Use Cases

= Lecture Note 01
= Lecture Note 02
= Lecture Note 03
= Lecture Note 04 - Software Design

= Lecture Note 05 - Class Diagrams

= Lecture Note 06 - CRC Cards

= Lecture Note 07 - Project Management

= Lecture Note 08 - Collaboration Diagrams

= Lecture Note 09 - Sequence Diagrams

= Lecture Note 10 - Activity Diagrams

= Lecture Note 11 - Statechart Diagrams

= Lecture Note 12 - Implementation Diagrams: Component and Deployment Diagrams
» Lecture Note 13 - Software Construction

= Lecture Note 14 - Software Testing

= Lecture Note 15 - Software Maintenance and Evolution

= Lecture Note 16 - Reuse and Components

= Lecture Note 17 - Software Quality

= Lecture Note 18 - Engineering High-Dependability Systems
= Lecture Note 19 - The End

SEOC1 Lecture Note 19

Software Engineering
Any Magic/Silver
Bullet?

See (in the resource web page)
a (kind of historical) list of papers on
"Software Engineering Bullets”

