Software Design

Massimo Felici
Room 1402, JCMB, KB
0131 650 5899

mfelici@inf.ed.ac.uk

Software Design

= TEEE standard glossary: “the process of
defining the architecture, components,
interfaces and other characteristics of a
system or component.”

= Usually a two stage process:

* Architectural Design (or High-level Design)
- What are the components and how do they relate?

- How does the system architecture deal with issues that
pervade the system?

* Detailed Design deals with the function and
characteristics of components and how they relate
to the overall architecture.

= No "magic bullet” in general

SEOC1 Lecture Note 04 2

The Link to Requirements

= Main activity in design:
- decomposing system (components) into smaller more

manageable components.

= Tdeally we retain the link from requirements to
components (traceability):

By allocating a particular requirement to a particular
component as we decompose, e.g., in VolBank, we might
require a log.

By decomposing requirements into more refined
requirements on particular components, e.g., a particular
function in VolBank might be realised "across several
components.

- Some requirements (e.g., usability) are harder to decompose,

e.g., it takes 30 minutes to become competent in using the
system.

= We might require traceability back from the design

SEOC1

Lecture Note 04 3

Traceability

SEOC1

There are four basic types of traceability:

Pre-traceability (e.g., requirements-sources, requirements-
rationale, etc.)

1. Forward-to requirements traceability links other documents
preceding requirements (e.g., users document)

2. Backward-from requirements traceability links requirements
to their sources (e.g., rationale)

Post-traceability (e.q.. requirements-architecture,
requirements-design, requirements-interface, etc.)

3. Forward-from requirements traceability links requirements to
design and implementation

4. Backward-to requirements traceability links design and
implementation back to requirements.

To manage requirements, you need to maintain

traceability information (e.g., Traceability Tables)

Requirements Management Tools support
traceability practice (e.g, IBM Rational
RequisitePro or Telelogic DOORS)

Lecture Note 04 4

Main Topics in Software Design

= Basic design concepts

= Key issues

- the main elements of software that need to be
managed

* Structure and architecture
» design in the large and design in the small

= Design notations
= Design quality and evaluation

= Design strategies

SEOC1 Lecture Note 04 5

Basic Design Concepts

= Design is a pervasive activity

- often there is no definitive solution
» solutions are highly context dependent

= Design links requirements to "implementable
specifications”
+ definitions of components that are easily codable

= Distinction between architectural design and
detailed design

SEOC1 Lecture Note 04 6

Key Design Techniques
= Abstraction
» ignoring detail to get the high level structure right

= Decomposition and Modularisation

* big systems are composed from small components
= Encapsulation/information hiding

* the ability to hide detail (linked to abstraction)

= Defined interfaces, seperable from
implementation

= Evaluation of structure:

» Coupling: How interlinked a component is.

» Cohesion: How coherent a component is.
SEOC1 Lecture Note 04 7

Key Issues in S/W Design

= Concurrency

- what are the main concurrent activities?
* how do we manage their interaction?

+ Often there is significant interaction that needs
management

* For instance, in VolBank, matching and specifying
skills and needs goes on concurrently

= Workflow and event handling

- What are the activities inside a workflow?
- How do we handle events?

= Distribution

* how is the system distributed over physical (and
virtual) systems?

SEOC1 Lecture Note 04 8

Key Issues in S/W Design continued

= Error handling and recovery

+ action when a physical component fails (e.g., the
database server).

* how to handle exceptional circumstances in the
world (e.g., a volunteer fails to appear).

» Persistence of data:

*+ does data need to persist across uses of the
system, how complex?

* How much of the state of the process?

= Can you think through some of these issues
for VolBank?

SEOC1 Lecture Note 04 9

Architecture and Structure

= Architectural structures and viewpoints
- attempt to deal with facets separately, e.g., physical view,

functional (or logical) view, security view, etc.

= Architectural styles, for example:
 Three-tier architecture for a distributed system (interface,

middleware, back-end database)

« Blackboard

- Layered architectures
* Model-View-Controller
- Time-triggered

= Design patterns
- small-scale patterns to guide the designer

* Families and frameworks

- component set and ways of plugging tfogether
- software product lines

SEOC1

Lecture Note 04 10

What are the Architect's Duties?

Get it Defined, documented and 8

communicated

Make sure everyone is using it
(correctly)

Identify architecture timely
stages that support the overall
organization progress

Make sure the software and
system architectures are in
synchronization

Act as the emissary of the
architecture

Make sure management
understands it

Make sure the right modeling is

being done, to know that quality

attributes are going to be met

SEOC1

Identify suitable tools and design
environments

Identify and interact with
stakeholders

Make sure that the architecture is
not only the right one for
operations, but also for deployment
and sustainment

Resolve disputes and make
tradeoffs

Resolve technical problems
Maintain morale
understand and plan for evolution

Manage risk identification and risk
mitigation strategies associated
with the architecture

Lecture Note 04 11

Architectural Design

= Advantages:

- Stakeholder Communication
- System Analysis
* Large-scale reuse

= Main Activities:
- System structuring
- Control modelling
* Modular decomposition
= There is no clear distinction between Sub-systems
and modules. Intuitively,

- Sub-systems are independent and composed of modules, have
defined interfaces for communication with other sub-
systems

 Modules are system components and provide/make use of
service(s) to/provided by other modules.

SEOC1 Lecture Note 04 12

Architecture Models

= Architecture Models that may be
developed may include:

1. A static structural model that shows the sub-
systems or components that are to be developed
as separate units.

2. A dynamic process model that shows how the
%ysfrem is organised info processes at run-time.
his may be different from the static model.

3. An interface model that defines the services
offered by each sub-system through their public
interface.

4. Relationship models that show relationships such
as data flow between the sub-systems.

SEOC1 Lecture Note 04 13

UML Design Notations

» Static Notations:

» Component diagrams

» Class and object diagrams
+ Deployment diagrams

» CRC Cards

= Dynamic Notations:

» Activity diagrams

» Collaboration diagrams
- Statecharts

- Sequence diagrams

SEOC1 Lecture Note 04

Comparing Architecture Design Notations

= Modelling Components:

+ Interface, Types, Semantics, Constraints,
Evolution, Non-functional Properties

= Modelling Connectors:

- Interface, Tfypes,_ Semantics, Constraints,
Evolution, Non-functional Properties

= Modelling Configurations:

» Understandable Specifications, Compositionality
(and Conposability), Refinement and Traceability,
Heterogeneity, Scalability, Evolvability, Dynamism,
Constraints, Non-functional Properties

SEOC1 Lecture Note 04 15

Quality Analysis and Evaluation

= The system architecture affects the quality
attributes of a system

= Quality attributes:

* Performance, security, availability,.. modifiability,
pc;r"rabuhfy, reusability, testability, maintainability,
etc.

= Quality analysis:

* reviewing techniques, static analysis, simulation,
performance analysis, prototyping

= Measures (metrics):

+ Defined measure on the design

* Predictive, but usually very dependent on the
process in use

SEOC1 Lecture Note 04 16

Design Strategies

= Depends on the type of system:
* Function oriented: sees the design of the functions

as primary

+ Data oriented: sees the data as the 1En*imcxr'y

structured element and drives design from there.

- Object oriented: sees objects as the primary

SEOC1

element of design

Lecture Note 04 17

VolBank: Example

= Suppose we consider two requirements:

+ That a request for a volunteer should produce a
list of volunteers with appropriate skills.

* The system shall ensure the safety of both
volunteers and the people and organisations who
host volunteers.

+ This may decompose into many more specific
requirements:
- That the organisation has made reasonable efforts to
ensure a volunteer is bona fide.

» That we have a confirmed address for the
individual: i.e., the orginal address is correct, and
only the volunteer can effect a change in address.

SEOC1 Lecture Note 04 18

Reading/Activity

= Please read Chapter 3 - Software Design -
of the SWEBOK for an overview of the work
on design.

" Please read chapters 4 and 5 of the
Schaum’s outline on UML for an introduction
to class diagrams.

» Please look at the additional material in the
course webpage.

SEOC1 Lecture Note 04 19

Summary

= Design is a complex matter

= Generally two stages:

» Architecture Design (or High-level Design)
» Detailed Design

= Many notations and procedures to support
design

= More domain-specificity for easier design
task

= Design links requirements to construction,
essential to ensure traceability

SEOC1 Lecture Note 04 20

