
Software Design

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



SEOC1 Lecture Note 04 2

Software Design
§ IEEE standard glossary: “the process of 

defining the architecture, components, 
interfaces and other characteristics of a 
system or component.”

§ Usually a two stage process:
• Architectural Design (or High-level Design)

• What are the components and how do they relate?
• How does the system architecture deal with issues that 

pervade the system?
• Detailed Design deals with the function and 

characteristics of components and how they relate 
to the overall architecture.

§ No “magic bullet” in general



SEOC1 Lecture Note 04 3

The Link to Requirements
§ Main activity in design:

• decomposing system (components) into smaller more 
manageable components.

§ Ideally we retain the link from requirements to 
components (traceability):
• By allocating a particular requirement to a particular 

component as we decompose, e.g., in VolBank, we might 
require a log.

• By decomposing requirements into more refined 
requirements on particular components, e.g., a particular 
function in VolBank might be realised across several 
components.

• Some requirements (e.g., usability) are harder to decompose, 
e.g., it takes 30 minutes to become competent in using the 
system.

§ We might require traceability back from the design



SEOC1 Lecture Note 04 4

Traceability
§ There are four basic types of traceability: 

• Pre-traceability (e.g., requirements-sources, requirements-
rationale, etc.)
1. Forward-to requirements traceability links other documents 

preceding requirements (e.g., users document)
2. Backward-from requirements traceability links requirements 

to their sources (e.g., rationale)
• Post-traceability (e.g., requirements-architecture, 

requirements-design, requirements-interface, etc.)
3. Forward-from requirements traceability links requirements to 

design and implementation
4. Backward-to requirements traceability links design and 

implementation back to requirements.

§ To manage requirements, you need to maintain 
traceability information (e.g., Traceability Tables)

§ Requirements Management Tools support 
traceability practice (e.g., IBM Rational
RequisitePro or Telelogic DOORS)



SEOC1 Lecture Note 04 5

Main Topics in Software Design

§ Basic design concepts

§ Key issues
• the main elements of software that need to be 

managed

§ Structure and architecture
• design in the large and design in the small

§ Design notations

§ Design quality and evaluation

§ Design strategies



SEOC1 Lecture Note 04 6

Basic Design Concepts

§ Design is a pervasive activity
• often there is no definitive solution
• solutions are highly context dependent

§ Design links requirements to “implementable 
specifications”
• definitions of components that are easily codable

§ Distinction between architectural design and 
detailed design



SEOC1 Lecture Note 04 7

Key Design Techniques
§ Abstraction

• ignoring detail to get the high level structure right

§ Decomposition and Modularisation
• big systems are composed from small components

§ Encapsulation/information hiding
• the ability to hide detail (linked to abstraction)

§ Defined interfaces, seperable from 
implementation

§ Evaluation of structure:
• Coupling: How interlinked a component is.
• Cohesion: How coherent a component is.



SEOC1 Lecture Note 04 8

Key Issues in S/W Design
§ Concurrency

• what are the main concurrent activities?
• how do we manage their interaction?
• Often there is significant interaction that needs 

management
• For instance, in VolBank, matching and specifying 

skills and needs goes on concurrently

§ Workflow and event handling
• What are the activities inside a workflow?
• How do we handle events?

§ Distribution
• how is the system distributed over physical (and 

virtual) systems?



SEOC1 Lecture Note 04 9

Key Issues in S/W Design continued

§ Error handling and recovery
• action when a physical component fails (e.g., the 

database server).
• how to handle exceptional circumstances in the 

world (e.g., a volunteer fails to appear).

§ Persistence of data:
• does data need to persist across uses of the 

system, how complex? 
• How much of the state of the process?

§ Can you think through some of these issues 
for VolBank?



SEOC1 Lecture Note 04 10

Architecture and Structure
§ Architectural structures and viewpoints

• attempt to deal with facets separately, e.g., physical view, 
functional (or logical) view, security view, etc.

§ Architectural styles, for example: 
• Three-tier architecture for a distributed system (interface, 

middleware, back-end database)
• Blackboard 
• Layered architectures
• Model-View-Controller
• Time-triggered

§ Design patterns
• small-scale patterns to guide the designer

§ Families and frameworks
• component set and ways of plugging together
• software product lines



SEOC1 Lecture Note 04 11

What are the Architect’s Duties?
§ Get it Defined, documented and 

communicated
§ Make sure everyone is using it

(correctly)
§ Identify architecture timely 

stages that support the overall 
organization progress

§ Make sure the software and 
system architectures are in 
synchronization

§ Act as the emissary of the 
architecture

§ Make sure management 
understands it

§ Make sure the right modeling is 
being done, to know that quality
attributes are going to be met

§ Identify suitable tools and design
environments

§ Identify and interact with 
stakeholders

§ Make sure that the architecture is 
not only the right one for 
operations, but also for deployment 
and sustainment

§ Resolve disputes and make 
tradeoffs

§ Resolve technical problems

§ Maintain morale

§ understand and plan for evolution

§ Manage risk identification and risk 
mitigation strategies associated 
with the architecture



SEOC1 Lecture Note 04 12

Architectural Design
§ Advantages:

• Stakeholder Communication
• System Analysis
• Large-scale reuse

§ Main Activities:
• System structuring
• Control modelling
• Modular decomposition

§ There is no clear distinction between Sub-systems 
and modules. Intuitively,
• Sub-systems are independent and composed of modules, have 

defined interfaces for communication with other sub-
systems

• Modules are system components and provide/make use of 
service(s) to/provided by other modules.



SEOC1 Lecture Note 04 13

Architecture Models

§ Architecture Models that may be 
developed may include:

1. A static structural model that shows the sub-
systems or components that are to be developed 
as separate units.

2. A dynamic process model that shows how the 
system is organised into processes at run-time. 
This may be different from the static model.

3. An interface model that defines the services 
offered by each sub-system through their public 
interface.

4. Relationship models that show relationships such 
as data flow between the sub-systems.



SEOC1 Lecture Note 04 14

UML Design Notations

§ Static Notations:
• Component diagrams
• Class and object diagrams
• Deployment diagrams
• CRC Cards

§ Dynamic Notations:
• Activity diagrams
• Collaboration diagrams
• Statecharts
• Sequence diagrams



SEOC1 Lecture Note 04 15

Comparing Architecture Design Notations

§ Modelling Components: 
• Interface, Types, Semantics, Constraints, 

Evolution, Non-functional Properties

§ Modelling Connectors:
• Interface, Types, Semantics, Constraints, 

Evolution, Non-functional Properties

§ Modelling Configurations:
• Understandable Specifications, Compositionality

(and Conposability), Refinement and Traceability, 
Heterogeneity, Scalability, Evolvability, Dynamism, 
Constraints, Non-functional Properties



SEOC1 Lecture Note 04 16

Quality Analysis and Evaluation
§ The system architecture affects the quality 

attributes of a system
§ Quality attributes:

• Performance, security, availability,… modifiability, 
portability, reusability, testability, maintainability, 
etc.

§ Quality analysis: 
• reviewing techniques, static analysis, simulation, 

performance analysis, prototyping
§ Measures (metrics):

• Defined measure on the design
• Predictive, but usually very dependent on the 

process in use



SEOC1 Lecture Note 04 17

Design Strategies

§ Depends on the type of system:
• Function oriented: sees the design of the functions 

as primary
• Data oriented: sees the data as the primary 

structured element and drives design from there.
• Object oriented: sees objects as the primary 

element of design



SEOC1 Lecture Note 04 18

VolBank: Example

§ Suppose we consider two requirements:
• That a request for a volunteer should produce a 

list of volunteers with appropriate skills.
• The system shall ensure the safety of both 

volunteers and the people and organisations who 
host volunteers.

• This may decompose into many more specific 
requirements:

– That the organisation has made reasonable efforts to 
ensure a volunteer is bona fide.

» That we have a confirmed address for the 
individual: i.e., the orginal address is correct, and 
only the volunteer can effect a change in address.



SEOC1 Lecture Note 04 19

Reading/Activity

§ Please read Chapter 3 – Software Design -
of the SWEBOK for an overview of the work 
on design.

§ Please read chapters 4 and 5 of the 
Schaum’s outline on UML for an introduction 
to class diagrams.

§ Please look at the additional material in the 
course webpage.



SEOC1 Lecture Note 04 20

Summary
§ Design is a complex matter

§ Generally two stages:
• Architecture Design (or High-level Design)
• Detailed Design

§ Many notations and procedures to support 
design

§ More domain-specificity for easier design 
task

§ Design links requirements to construction, 
essential to ensure traceability


