
1

SEOC1 – 2003-4

Software DesignSoftware Design

Stuart Anderson

Room 1610, JCMB, KB
0131 650 5191, soa@inf.ed.ac.uk

SEOC1 – 2003-4

Reading/ActivityReading/Activity
§ Please read pages 35-41 of the SWEBOK

for an overview of the work on design.
§ Please read chapters 4 and 5 of the

Schaum’s outline on UML for an introduction
to class diagrams.
§ Read the outline of the practical activity in

preparation for Wednesday’s tutorials
(issued today!).

SEOC1 – 2003-4

Software DesignSoftware Design
§ IEEE standard glossary: “the process of

defining the architecture, components,
interfaces and other characteristics of a
system or component”

§ Usually a two stage process:
• Architectural design – what are the components

and how do they relate? In particular, try to deal
with issues that pervade the system.

• Detailed design – the function and characteristics
of components and how they relate to the overall
architecture.

§ No “magic bullet” in general

SEOC1 – 2003-4

The Link to RequirementsThe Link to Requirements
§ Main activity in design here: decomposing

components into smaller more manageable
components.

§ Ideally we retain the link from requirements to
components (traceability):
• By allocating a particular requirement to a particular

component as we decompose (e.g. in VolBank , we might
require a log)

• By decomposing requirements into more refined
requirements on particular components (e.g. a particular
function in VolBank might be realised across several
components.

• Some requirements are harder to decompose, e.g. usability
(e.g. It takes 30 minutes to become competent in using the
system).

§ We might require traceability back from the design

2

SEOC1 – 2003-4

Main Topics in Software DesignMain Topics in Software Design
§ Basic design concepts
§ Key issues – the main elements of software

that need to be managed

§ Structure and architecture – design in the
large and design in the small.
§ Design quality and evaluation

§ Design notations
§ Design strategies

SEOC1 – 2003-4

Basic Design ConceptsBasic Design Concepts
§ Design is a pervasive activity – often there

is no definitive solution – solutions are highly
context dependent.

§ Design links requirements to “implementable
specifications”, - definitions of components
that are easily codable.

§ Distinction between architectural design and
detailed design.

SEOC1 – 2003-4

Key Design TechniquesKey Design Techniques
§ Abstraction – ignoring detail to get the high level

structure right.

§ Decomposition and modularisation: big systems are
composed from small components.

§ Encapsulation/information hiding – the ability to
hide detail (linked to abstraction)

§ Defined interfaces, seperable from implementation

§ Evaluation of structure:
• Coupling: How interlinked a component is.
• Cohesion: How coherent a component is.

SEOC1 – 2003-4

Key Issues in S/W DesignKey Issues in S/W Design
§ Concurrency – what are the main concurrent

activities – how do we manage their
interaction (e.g. in VolBank: matching and
specifying skills and needs goes on
concurrently). Often there is significant
interaction that needs management.
§ Workflow and event handling, what are the

activities inside a workflow and how to we
handle events.
§ Distribution – how is the system distributed

over physical (and virtual) systems.

3

SEOC1 – 2003-4

Key Issues (Key Issues (ctdctd))
§ Error handling and recovery – action when a

physical component fails (e.g. the database
server), how to handle exceptional
circumstances in the world (e.g. a volunteer
fails to appear).
§ Persistence of data: does data need to

persist across uses of the system, how
complex? How much of the state of the
process?
§ Can you think through some of these issues

for VolBank?

SEOC1 – 2003-4

Architecture and StructureArchitecture and Structure
§ Architectural structures and viewpoints: attempt

to deal with facets separately (e.g. physical view,
functional (or logical) view, security view, …)

§ Architectural styles: for example:
• Three-tier architecture for a distributed system (interface,

middleware, back-end(database))
• Blackboard
• Layered architectures
• Model-View-Controller

§ Design patterns – small-scale patterns to guide the
designer

§ Families and frameworks: component set and ways
of plugging together – software product lines

SEOC1 – 2003-4

Quality Analysis and EvaluationQuality Analysis and Evaluation
§ Quality attributes:

• Performance, security, availability, …
• Modifiability, portability, reusability, testability,

maintainability, …
§ Quality analysis: reviewing techniques, static

analysis, simulation, performance analysis,
prototyping
§ Measures (metrics):

• Defined measure on the design
• Predictive, but usually very dependent on the

process in use.

SEOC1 – 2003-4

Design NotationsDesign Notations
§ Static Notations:

• Component diagrams
• Class and object diagrams
• Deployment diagrams
• CRC Cards

§ Dynamic Notations:
• Activity diagrams
• Collaboration diagrams
• Statecharts
• Sequence diagrams

4

SEOC1 – 2003-4

Design StrategiesDesign Strategies
§ Depends on the type of system:

• Function oriented – sees the design of the
functions as primary.

• Data oriented – sees the data as the primary
structured element and drives design from there.

• Object oriented – sees objects as the primary
element of design

SEOC1 – 2003-4

VolBankVolBank: Example: Example
§ Suppose we consider two requirements:

• That a request for a volunteer should produce a
list of volunteers with appropriate skills.

• The system shall ensure the safety of both
volunteers and the people and organisations who
host volunteers.

• This may decompose into many more specific
requirements:

– That the organisation has made reasonable efforts to
ensure a volunteer is bona fide.

» That we have a confirmed address for the
individual: ie the orginal address is correct, and
only the volunteer can effect a change in address.

SEOC1 – 2003-4

SummarySummary
§ Design is a complex matter
§ Generally two stages – architecture,

detailed design

§ Many notations and procedures to support
design.
§ More domain-specificity => easier design

task
§ Design links requirements to construction,

essential to ensure tracability.

