Use Cases

Stuart Anderson
Room 1610, JCMB, KB
0131 650 5191, soa@inf.ed.ac.uk

Reading/Activity

= Please read the Volere template that is
linked off the notes page on the course web

page.

» Please read Alistair Cockburn’s paper
Structuring Use Cases with Goals which Is
also available off the notes page.

= Read the outline of the practical activity In
preparation for Wednesday's tutorials.

Use Case Diagrams

= Intended to support Requirements
Engineering

= Strengths: capture different actors views
of the system; comprehensible by naive
users; capture some elements of structure
In requirements.

» \WWeaknesses: not particularly strong in
capturing non-functional aspects; doesn't
support analysis particularly well;

Why Use Case Diagrams?

Model actions of the system at its external
Interface

High level view of the system

Capture how the system coordinates human
action

Rapid change allows exploratory approach

Link to scenarios keeps the activity
concrete

Comprehensible by users.

Capture some structure.

Specimen Use Case Diagram

system boundary >

system name —
\"cnnic
Cancel Appointment

X

Fatient

E

extension point -

Make Appointment

—_—
-—

==jinciude==

—

_—
-_—_

C@ck F'atientHecE_rﬂ:D

==include== ,'T\
|

Scheduler

|- include use case

X

Doctor

Fequest Medication
=zoytend== Defer Fayrment
a

&

Fay Bill

- extend use case

X

Extension points
hMore Treatment

child use case

Bill Insurance

generalization

Clerk

Anatomy of a use Case Diagram

Basic Diagrams: actors are represented as stick
figures, use cases as ellipses, lines represent
associations between these things. So basic use
case diagrams show who is involved with what.

Can be used to help in structuring systems: e.g. the
scheduler and patient more or less form a sub-
system - look at delegating appointment
management to a single component or sub-system.

Take care to identify generic actors who do a
particular task - don’'t get confused with job titles
etc.

Aim for reasonably generic use cases - try not be
too detailed at first.

Use case diagrams should not be too complex.

Attaching Use Cases

= Use cases should be attached to each case
In the diagram. Use case IS a generic
seguence of actions undertaken in using th
system, e.g. :

Patient: request appointment to scheduler
Scheduler: queries System for available times
System: responds with times

Scheduler: negotiates with Patient on suitable time
Scheduler: confirms time with system

System: responds with confirmation of
appointment (e.g. booking number).

Scheduler: communicates confirmation to Patient

= Provided generic test scenarios for the full
system.

Structure INn Use Cases

Generalisation: between use cases; between
actors - In use cases, see the example: pay
bill is a generalisation of bill insurance. A
“health worker” Is a generalisation of
“nurse”, “doctor” etc.

Include relationships hold when one use case
IS Included In others. For example, looking
up medical records is included in many other
use cases.

One use case extends another when It has
the same function but Is more particular,
e.g. deferring payment as a means of paying.

Software Requirements

= Main activities involved in Software
Requirements engineering:

Elicitation: Identify sources; Elicit requirements

Analysis: Classifty requirements; Model; Top-level
architecture; Allocate requirements to

components; Negotiate requirements

Specification: Requirements Definition Doc;

Software Requirements Specification; Document
Standards; Document Quality

Validation: Reviews; Prototypes; Modelling; Test
definition

Management: Traceability; Attributes;
Change/Evolution

= The pattern, sequence and interaction of
these activities Is orchestrated by a
Requirements Engineering Process.

Creating Use Cases

= Find the actors and use case names: can use
checklists - who uses the system, who manages the
system, who maintains the system etc.

= Prioritize the use cases on the basis of utility or
frequency of use - depending on the process this
may be closely linked to what Is needed in the
process

= Develop each use case: develop the associated use
case.

= Work to find structure in the use case: identify
relationships introduce these to the model

VolBank: Incomplete Diagram

-—

1f Ragister Details 7

—
" —_
i Tl
<includess" -~ . __\Il
r"--'_ —_|__‘__‘.L
—_——— __ _l:-u___IP'an cfer Detasli_'__,J-————_—_
D #Time 1= - C— T =TT T———
apns P .
e - c=includes=»

YWalunteer
Operator

G Record Individual Needs 2
=~ <=sunbndes

-

-

R

- — ——_

ﬂ:__F.‘_ecnrd N&Edsd_)

B -c:-:extend:-::-:‘?—‘_

- -~
—_— - -
e — —_—

o Fecard Organisational Heeds o
—-—_ & q A

—_—

UWaluntare Organization

VolBank: Activity

= In class, or afterwards If it Is not completed
In class:

Who are the main actors in the VolBank example?

Can you identify all the main use case names in the
system?

What opportunities are there to structure the use
case diagram?

Can you see any non-functional requirements that
are present in the specification?

How well are non-functional requirements
represented in the use case diagram?

