
Alan Stewart I2C Motor Multiplexer

I2C Motor Multiplexer

The I2C motor multiplexer board can be used to drive up to 4 DC motors from a

NXT sensor port. The motors are able to be controlled independently by using 2

registers: one for direction and another for speed. There are 2 motor controller

chips on each board, while this is not important from a design point of view it is

worth noting that even if one chip is broken the other will be able to function.

Fig 1. Representation of I2C Motor Multiplexer

Motor Control

The direction registers should hold values between 0 and 3 corresponding to the

following actions. It must be noted that should the value 3 be put in the register

then the motor multiplexer will impose 0V across the motor. This means that

NXT port

I2C Bridge

Motor
Multiplexer 1

Motor 1

0x01
Motor 1 Direction

0x02
Motor 1 Speed

Motor 2

0x03
Motor 2 Direction

0x04
Motor 2 Speed

0x05
Motor 3 Direction

0x06
Motor 3 Speed

0x07
Motor 4 Direction

0x08
Motor 4 Speed

Motor
Multiplexer 2

Motor 3 Motor 4

Alan Stewart I2C Motor Multiplexer

should the motor be turned when the motor is in the break state that the motor

multiplexer will drive reverse current in order to impose this 0V. While this may

not appear to be a huge issue it can lead to the boards overloading if the motor is

externally driven while in the break state.

Particular care should be taken if this board is being used to power a solenoid as

the back EMF is more than capable of blowing the motor controller chips. One

other consequence of break is that it will drain the battery very quickly due to

the imposition of 0V.

This is not to say that break cannot be used but it does mean that very careful

consideration if break is really needed or if float is a sufficient to accomplish the

task.

Fig 2. Direction look up table

Direction Value Result

0 Float (use this for off)

1 Forwards

2 Backwards

3 Break (BE VERY CAREFUL WITH THIS)

The speed register can take a value from 0 to 255 and controls the speed of the

motor in whatever direction it is spinning.

Fig 3. Lejos I2C methods used

Method Description

i2cEnable Tells the I2C port how to function. Use

I2CPort.STANDARD_MODE for the motor multiplexer

setAddress(int) Sets the address of the I2C to be used. In this case hex 5A or 90

sendData(int,byte) The byte is transferred to the register int. This returns a 0 if

completed non 0 if an error

Alan Stewart I2C Motor Multiplexer

Sample Lejos code

Fig 4. Lejos sample code

This code will turn motor 1 forward at a reasonably fast speed The code could

then be expended to perform a kicking action by having it wait a short period of

time, reversing , waiting again, and then finally going into float mode.

Fig 5. Sample Lejos kicker code

I2CPort I2Cport; //Create a I2C port
I2Cport = SensorPort.S1; //Assign port
I2Cport.i2cEnable(I2CPort.STANDARD_MODE);
//Initialize port in standard mode

I2CSensor I2Csensor = new I2CSensor(I2Cport);
//Creates an I2CSensor

byte direction = (byte)1;
byte speed = (byte)200;

I2Csensor.setAddress(0x5A);
I2Csensor.sendData(0x01,direction);
I2Csensor.sendData(0x02,speed);

I2CPort I2Cport; //Create a I2C port
I2Cport = SensorPort.S1; //Assign port
I2Cport.i2cEnable(I2CPort.STANDARD_MODE);
//Initialize port in standard mode

I2CSensor I2Csensor = new I2CSensor(I2Cport);
//Creates an I2CSensor

byte forward = (byte)1;
byte backward = (byte)2;
byte off = (byte)0;
byte speed = (byte)200;

I2Csensor.setAddress(0x5A);
I2Csensor.sendData(0x01,forward);
I2Csensor.sendData(0x02,speed);

Thread.sleep(20);
I2Csensor.sendData(0x01,backward);

Thread.sleep(20);
I2Csensor.sendData(0x01,off);
I2Csensor.sendData(0x02,off);

Alan Stewart I2C Motor Multiplexer

There was some initial trouble with the I2C code, this appears to have been

caused by the batter not being powerful enough to drive the motor through the

I2C board despite it being powerful enough to drive the motor on its own.

The problem was initially thought to lie with the information from mindsensors

with regard to the registers being incorrect; the information for the address of

the board was incorrect so this assumption was reasonable at the time however

after performing multiple register sweeps. Putting 1 in every odd register and

200 in ever even the board refused to work. However when this was revered the

board started to operate despite the registers being revered. The exact reason

for this is not known.

Fig 6. I2C register sweep

The code will do a complete register sweep putting 1 in each odd register and 200

in each even register, then wait 10 seconds and do the reverse.

I2CPort I2Cport; //Create a I2C port
I2Cport = SensorPort.S1; //Assign port
I2Cport.i2cEnable(I2CPort.STANDARD_MODE);
//Initialize port in standard mode

I2CSensor I2Csensor = new I2CSensor(I2Cport);
//Creates an I2CSensor

int counter;
byte direction = (byte)1;
byte speed = (byte)200;

I2Csensor.setAddress(0x5A);

for(counter = 0; counter <65; counter ++){
I2Csensor.sendData(0x01 +
(2*counter),direction);
I2Csensor.sendData(0x02 + (2*counter),speed);
}

 Thread.sleep(1000)

for(counter = 0; counter <65; counter ++){
I2Csensor.sendData(0x02 +
(2*counter),direction);
I2Csensor.sendData(0x01 + (2*counter),speed);
}

