Raspberry PI and Turtlebot Camera Guide

Raspberry PI PICAMERA - Command Line Control

To capture a picture:-

$ raspistill -o cam.jpg

To capture a video:-

$ raspivid -o vid.h264

To view pictures and videos on the Raspberry PI:-
Gpicview and vlc are both installed and available to use to view pictures and videos respectively

To export picture and videos:-
Scp and ftp over to your DiCE account and/or your home computer and view from there.

To stream a video from your Raspberry PI:-
$ raspivid -t 0 -l -o tcp://0.0.0.0:3333

Or

$ raspivid -o -t 0 -n | cvlc -vvv stream:///dev/stdin --sout '#rtp{sdp=rtsp://:8554/}' :demux=h264

Note:- the second option requires vlc to be installed on your raspberry pi (the turtlebot Raspberry PI's do not have vlc installed as part of their original build)

To view your streamed video:-
VLC - media - open network stream
tcp/h264://192.168.0.77:3333
$ vlc tcp/h264://192.168.0.77:3333
Or
rtsp://192.168.0.77:8554/

Raspberry PI - PICAMERA - Display Camera

from picamera import PiCamera
from time import sleep

Camera = PiCamera()
camera.start_preview()
sleep(5)
camera.stop_preview()

Raspberry PI - PICAMERA - Capture Image

camera.start_preview()
sleep(5)
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()

Raspberry PI - PICAMERA - Record Video

camera.start_preview()
camera.start_recording('/home/pi/Desktop/video.h264')
sleep(5)
camera.stop_recording()
camera.stop_preview()

To View the USB Webcam

```
$ ls /dev
```
On the standalone raspberry PI's the USB Webcam should appear as video1
On the turtlebots raspberry PI's the USB Webcam should appear as video0

```
$ vlc
Media - open_capture_device
```
Video device name = video0 or video1 (refer to note above)
Video standard = All

Raspberry PI USB Webcam - Capture Image

using pygame:
import pygame
import pygame.camera

pygame.camera.init()
pygame.camera.list_cameras() #Camera detected or not
cam = pygame.camera.Camera("/dev/video1",(640,480))
cam.start()
img = cam.get_image()
pygame.image.save(img,"filename.jpg")

Display Webcam Video

Note:- VNC needs to be enabled on Raspberry PI and code should be run from a VNC connection

With OpenCV
import cv2

cap = cv2.VideoCapture("/dev/video1")

Check if the webcam is opened correctly
if not cap.isOpened():
 raise IOError("Cannot open webcam")

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=1, fy=1, interpolation=cv2.INTER_AREA)
 cv2.imshow('Input', frame)
 c = cv2.waitKey(1)
 if c == 27:
 break

 cap.release()
 cv2.destroyAllWindows()

With Pygame
import pygame
import pygame.camera
from pygame.locals import *

DEVICE = '/dev/video1'
SIZE = (640, 480)
FILENAME = 'capture.png'

def camstream():
 pygame.init()
 pygame.camera.init()
 display = pygame.display.set_mode(SIZE, 0)
 camera = pygame.camera.Camera(DEVICE, SIZE)
 camera.start()
 screen = pygame.surface.Surface(SIZE, 0, display)
 capture = True
 while capture:
 screen = camera.get_image(screen)
 display.blit(screen, (0,0))
 pygame.display.flip()
 for event in pygame.event.get():
 if event.type == QUIT:
 capture = False
 elif event.type == KEYDOWN and event.key == K_s:
 pygame.image.save(screen, FILENAME)
 camera.stop()
 pygame.quit()

if __name__ == '__main__':
 camstream()

Capture Webcam Stream
With OpenCV
import numpy as np
import cv2

cap = cv2.VideoCapture('/dev/video1')

Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc('XVID')
out = cv2.VideoWriter('output.avi', fourcc, 20.0, (640,480))

while(cap.isOpened()):
ret, frame = cap.read()
if ret==True:
 frame = cv2.flip(frame,0)

 # write the flipped frame
 out.write(frame)

 cv2.imshow('frame',frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break
else:
 break

Release everything if job is finished
cap.release()
out.release()
cv2.destroyAllWindows()