
A few important patterns and their connections

Perdita Stevens

School of Informatics
University of Edinburgh

Plan

I Singleton

I Factory method

I Facade

and how they are connected.

You should understand how to use the patterns individually, but
more importantly, how they are related and how they contribute to
good OO design.

See the end of this slide set for which patterns are
examinable. NB not spending a lot of lecture time on patterns
this year: that is because there are so many good sources of
information on them elsewhere, not because they aren’t important.
See schedule page.

Singleton

Common problem: In OO systems a class often has only one
object. Sometimes, it’s important to ensure that it only has one
object.

E.g., it’s maintaining an important datum that needs to be held
consistently, in only one version; or it’s connecting to an external
system with which your system should be having only one
“conversation”.

Solution: Singleton, one of the simplest patterns, ensures this.
Key element: make the constructor private so that you can control
how objects are created.

Singleton: class diagram

Note the notation (underlining) for the class-level (static, in Java)
attribute and operation. These are essential, since the constructor
is private!

Image: Wikipedia



Notes on Singleton

I Advantage: lazy instantiation possible – the instance need not
actually be created unless or until it is needed.

I Drawback: introduces global state.

I Drawback: great care is needed in multi-threaded applications.

I Advantage: often useful in conjunction with other patterns,
e.g. Factory Method, Facade (coming up).

I Use sparingly

Exercise

Read the Wikipedia article on Singleton, which includes many
implementations and discussions of their pros and cons, as well as
discussion of the use and abuse of Singleton. For extra education,
read the Talk page too.

new considered harmful?

In typical OO programming, the clients of Classname use ...new
Classname... code to control object instantiation directly.

This has two effects:

1. responsibility for deciding whether, when, and how objects are
created rests with the clients; it may be widely distributed
through the system, especially if there are many clients;

2. new is not polymorphic. It takes a single specific class name
and creates an object of exactly that class. So a client’s code
must be modified, if it is to be made to work with a subclass
of Classname.

These effects may or may not be problems – it depends on the
context.

new considered sometimes harmful, if misplaced

Alternatives to (uncontrolled use of) new

The Singleton pattern can be seen as a way to give an alternative
to point 1. A client of a Singleton class can still get an instance,
but the responsibility for actually creating the instance belongs to
the Singleton itself.

Note that, despite the name, there could even be more than one
object created – the point is that clients don’t control how many
there are, the Singleton class itself does.

With a private constructor, we can’t subclass a Singleton, so we
don’t address 2. With care, we could make the constructor
protected and do so... But would we ever want to? This takes us
to Factory Method.



Factory Method

Common problem: your class needs to own an object and use its
services. The services you need are described by a fairly abstract
class/interface (Product, say) which has various subclasses and/or
a complicated creation process, that shouldn’t be your class’s
business.

Only one line of your code depends on which kind of Product
you’re going to have and how it’s going to be built:

Product p = new ConcreteProduct(...);

Solution: Instead, get something else to build and give you a
Product so that all your code is written purely in terms of
Product.

In effect, your class says “Give me an appropriate Product” and
declines to concern itself with exactly what is returned or how it is
created.

Factory Method: class diagram

Image: http://stackoverflow.com/questions/5739611/

differences-between-abstract-factory-pattern-and-factory-method

Where does a factory method live?

In a factory, of course :-)

In most versions of the Factory Method pattern, and in the original
Gamma description, it’s important that the factory that creates a
product is in a different class – and class hierarchy – from the
product itself.

Without that, we don’t get advantage 2. above (making object
creation polymorphic). We want depending on a factory class not
to imply depending on the concrete product class, and if they’re
the same class, of course it does!

But some other advantages of Factory Method apply when a
product can be its own factory, and these days this is sometimes
also included in Factory Method. Other sources give this a
different name, e.g. static factory method, and get irate when
people lump them together. (The sourcemaking page is a little
ambivalent, I think: watch out.)

Static factory method example

class Point {

private float x, y; // secretly, we use Cartesian coordinates inside

private Point (float xin, float yin) { x = xin; y = yin; }

public static Point createCartesianPoint(float x, float y) {

return new Point(x, y);

}

public static Point createPolarPoint(float r, float theta) {

// calculate x and y using trigonometry...

return new Point(x, y);

}

NB because we can’t override static methods, it’s not
straightforward to get all the benefits of Factory Method this way.

http://stackoverflow.com/questions/5739611/differences-between-abstract-factory-pattern-and-factory-method
http://stackoverflow.com/questions/5739611/differences-between-abstract-factory-pattern-and-factory-method


Relation between Factory Method and Singleton

How does your class contact the object that provides the factory
method? One possibility: it may be a Singleton.

In fact, the Singleton’s getInstance() method is a static factory
method, so if you count that as Factory Method, you can see
Singleton as a special case of Factory Method.

A simple example of Factory Method

is the single method

ContentHandler createContentHandler(String mimetype)

of the interface ContentHandlerFactory in the JDK.

A class that implements ContentHandlerFactory must
implement that method, i.e. provide a way for clients to supply a
string describing a mime type and get back a(n appropriate, we
hope!) ContentHandler.

This makes it possible to write clients that work uniformly on all
ContentHandlers, and do not have to concern themselves with
what subclasses ContentHandler may have, or indeed, with how
mime type strings map to those classes.

Naming: a further advantage of Factory Method

In the Point example, we used meaningful names to distinguish
different ways of creating an object.

More generally: could be different in argument list, or meaning of
arguments (as in Point) or in other characteristics e.g. efficiency.

Constructor overloading doesn’t get you all the flexibility you want,
and leads to unreadable code anyway.

NB this is an advantage we get both from Factory Method and
from static factory methods. E.g.

Product p = factory.createSpaceOptimisedProduct(17);

might be creating an object of a subclass of Product, or not: we
don’t need to know.

Visibility of constructor

If your factory is not the same class as the product, the product
class still needs a public (or at least, package visible) constructor –
or its own static factory method! – as the factory will need to use
it.

Inside the product class, you have a choice. Constructor could be:

I public: maximum flexibility for clients. If you’ve added the
factory method to old code, leaving the public constructor
means old clients don’t have to be rewritten.

I private: now your objects can only be created via the factory
method(s). The class cannot be subclassed.

I protected: now the class can be subclassed, and subclasses
might add new factory methods. Risk and benefit.



Abstract Factory

An Abstract Factory is an object containing a collection of related
Factory Methods.

Useful where which family of Product subclasses is appropriate is
determined by one condition, e.g., which operating system we’re
running on.

Classic example: GUI toolkits. See for example
java.awt.toolkit.

Facade

Common problem: you have roughly separated your classes into
two packages, but there are several dependencies of classes in
package A on classes in package B. It becomes hard to work out
what the effect of a change in package B will be, and developers
who want to use the services of package B have to understand the
detail of what’s inside it.

Solution: you create a Facade class whose job it is to present a
single, simple interface to package B. All requests for services from
anything in package B are sent to an object of the Facade class.
This object may just forward the request to the right object, or it
may do more complex things.

Facade: class diagram

Image: http://best-practice-software-engineering.ifs.tuwien.ac.

at/patterns/facade.html

Notes on Facade

I Advantage: very useful way to control dependencies

I Advantage: hides a multitude of sins. Lets you redesign a
subsystem behind a facade without impacting what is outside.

I Disadvantage: incurs the cost of extra method calls (usually
not a problem).

I The Facade may be a Singleton, but this isn’t always
necessary.

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/facade.html
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/facade.html


Creational patterns

I * Abstract Factory

I Builder

I * Factory Method

I Prototype

I * Singleton

(Learn those with *)

Structural patterns

I Adapter

I Bridge

I * Composite

I * Decorator

I * Facade

I Flyweight

I Proxy

(Learn those with *)

Behavioral patterns

I Chain of responsibility

I Command

I Interpreter

I Iterator

I Mediator

I Memento

I * Observer

I * State

I * Strategy

I Template method

I * Visitor

(Learn those with *)


