
Problem 9

1 The basic problem

Suppose you have an integrated development environment (IDE) in which each
kind of node in the abstract syntax tree is represented by a separate class;
you have classes AssignmentNode, VariableRefNode and so on, all of which are
specialised subclasses of an abstract class Node.

Now the IDE must provide many different operations on the program: for
example, type checking, code generation, and pretty printing. Each operation
needs, conceptually, to make requests of each node in the AST, with each kind
of node responding differently to the request.

2 An initial solution...

3 A standard solution: VISITOR

We package related operations for each class into a separate object called a
visitor: there is a concrete subclass of Visitor for each operation, e.g. Type-
CheckingVisitor, CodeGeneratingVisitor:

NodeVisitor

visitVariableRef(VariableRefNode n)

visitAssignment(AssignmentNode n)

TypeCheckingVisitor

visitVariableRef(VariableRefNode n)

visitAssignment(AssignmentNode n)

CodeGeneratingVisitor

visitVariableRef(VariableRefNode n)

visitAssignment(AssignmentNode n)

To implement an operation – e.g. typechecking – the application creates a
visitor of the right kind – e.g. a TypeCheckingVisitor. It then traverses the
AST, sending to each node the message accept, with the visitor v as argument.
Each node reacts by sending to v the visit message corresponding to its own
type, with itself as argument:



Node

accept(NodeVisitor v)

AssignmentNode VariableRefNode

accept(NodeVisitor v) accept(NodeVisitor v)

v.visitAssignment(this) v.visitVariableRef(this)

The visitor implements, as its reaction to that message, the correct be-
haviour for performing this operation on this kind of node – e.g., typechecking
an assignment.

4 When and why is this solution good?


