
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 5:

Modelling with Classes

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 2

5.1 What is UML?

The Unified Modelling Language is a standard graphical language
for modelling object oriented software

• At the end of the 1980s and the beginning of 1990s, the first object-
oriented development processes appeared

• The proliferation of methods and notations tended to cause
considerable confusion

• Two important methodologists Rumbaugh and Booch decided to
merge their approaches in 1994.

—They worked together at the Rational Software Corporation

• In 1995, another methodologist, Jacobson, joined the team

—His work focused on use cases

• In 1997 the Object Management Group (OMG) started the process
of UML standardization

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 3

UML diagrams

• Class diagrams
—describe classes and their relationships

• Interaction diagrams

—show the behaviour of systems in terms of how
objects interact with each other

• State diagrams and activity diagrams
—show how systems behave internally

• Component and deployment diagrams
—show how the various components of systems are

arranged logically and physically

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 4

UML features

• It has detailed semantics
• It has extension mechanisms
• It has an associated textual language

—Object Constraint Language (OCL)

The objective of UML is to assist in software
development

—It is not a methodology

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 5

What constitutes a good model?

A model should
• use a standard notation
• be understandable by clients and users

• lead software engineers to have insights about the
system

• provide abstraction

Models are used:
• to help create designs

• to permit analysis and review of those designs.

• as the core documentation describing the system.

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 6

5.2 Essentials of UML Class Diagrams

The main symbols shown on class diagrams are:
• Classes

- represent the types of data themselves

• Associations
- represent linkages between instances of classes

• Attributes
- are simple data found in classes and their instances

• Operations
- represent the functions performed by the classes and their

instances

• Generalizations
- group classes into inheritance hierarchies

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 7

Classes

A class is simply represented as a box with the name of the class
inside

• The diagram may also show the attributes and operations

• The complete signature of an operation is:

operationName(parameterName: parameterType …): returnType

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 8

5.3 Associations and Multiplicity

An association is used to show how two classes are related to each
other

• Symbols indicating multiplicity are shown at each end of the
association

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 9

Labelling associations

• Each association can be labelled, to make explicit the nature of the
association

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 10

Analyzing and validating associations

• Many-to-one
—A company has many employees,
—An employee can only work for one company.

- This company will not store data about the moonlighting
activities of employees!

—A company can have zero employees
- E.g. a ‘shell’ company

—It is not possible to be an employee unless you work
for a company

*
worksForEmployee Company1

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 11

Analyzing and validating associations

• Many-to-many
—An assistant can work for many managers
—A manager can have many assistants

—Assistants can work in pools
—Managers can have a group of assistants
—Some managers might have zero assistants.
—Is it possible for an assistant to have, perhaps

temporarily, zero managers?

*

supervisor

*****1..*Assistant Manager

Open in Umple

http://try.umple.org/?text=class%20Assistant%20%7B%7D%0A%0Aclass%20Manager%20%7B%0A%20%201..*%20supervisor%20--%20*%20Assistant;%0A%7D//$?%5BEnd_of_model%5D$?%0A%0Aclass%20Assistant%0A%7B%0A%20%20position%2049%2030%20109%2045;%0A%7D%0A%0Aclass%20Manager%0A%7B%0A%20%20position%2073%20127%20109%2045;%0A%7D

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 12

Analyzing and validating associations

• One-to-one
—For each company, there is exactly one board of

directors
—A board is the board of only one company

—A company must always have a board
—A board must always be of some company

Company BoardOfDirectors11

Open in Umple

http://try.umple.org/?text=class%20Company%20%7B%7D%0Aclass%20BoardOfDirectors%20%7B%7D%0A%0Aassociation%20%7B%0A%20%201%20Company%20--%201%20BoardOfDirectors;%0A%7D//$?%5BEnd_of_model%5D$?%0A%0Aclass%20Company%0A%7B%0A%20%20position%2050%2030%20109%2045;%0A%7D%0A%0Aclass%20BoardOfDirectors%0A%7B%0A%20%20position%2050%20130%20109%2045;%0A%7D

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 13

Analyzing and validating associations

Avoid unnecessary one-to-one associations

Avoid this do this

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 14

A more complex example

• A booking is always for exactly one passenger

—no booking with zero passengers

—a booking could never involve more than one passenger.

• A Passenger can have any number of Bookings

—a passenger could have no bookings at all

—a passenger could have more than one booking

• The frame around this diagram is an optional feature that any
UML 2.0 may possess.

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 15

Association classes

• Sometimes, an attribute that concerns two associated classes
cannot be placed in either of the classes

• The following are equivalent

Open in Umple and extended example

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 16

Reflexive associations

• It is possible for an association to connect a class to itself

Open in Umple

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 17

Directionality in associations

• Associations are by default bi-directional

• It is possible to limit the direction of an association by adding
an arrow at one end

Open in Umple

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 18

5.4 Generalization

Specializing a superclass into two or more subclasses

• A generalization set is a labeled group of generalizations with a
common superclass

• The label (sometimes called the discriminator) describes the
criteria used in the specialization

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 19

Avoiding unnecessary generalizations

Inappropriate hierarchy of
classes, which should be
instances

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 20

Avoiding unnecessary generalizations (cont)

Improved class diagram, with its corresponding instance
diagram

Open in Umple

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 21

Handling multiple discriminators

• Creating higher-level generalization

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 22

Handling multiple discriminators

• Using multiple inheritance

• Using the Player-Role pattern (in Chapter 6)

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 23

Avoiding having instances change class

• An instance should never need to change class

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 24

5.5 Object Diagrams

• A link is an instance of an association

—In the same way that we say an object is an instance of a class

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 25

Associations versus generalizations in
object diagrams

• Associations describe the relationships that will exist
between instances at run time.

—When you show an instance diagram generated from
a class diagram, there will be an instance of both
classes joined by an association

• Generalizations describe relationships between classes
in class diagrams.

—They do not appear in instance diagrams at all.
—An instance of any class should also be considered

to be an instance of each of that class’s superclasses

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 26

5.6 More Advanced Features: Aggregation

• Aggregations are special associations that represent ‘part-whole’
relationships.

—The ‘whole’ side is often called the assembly or the aggregate

—This symbol is a shorthand notation association named
isPartOf

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 27

When to use an aggregation

As a general rule, you can mark an association as an
aggregation if the following are true:

• You can state that
—the parts ‘are part of’ the aggregate
—or the aggregate ‘is composed of’ the parts

• When something owns or controls the aggregate, then they
also own or control the parts

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 28

Composition

• A composition is a strong kind of aggregation

—if the aggregate is destroyed, then the parts are destroyed as
well

• Two alternatives for addresses

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 29

Aggregation hierarchy

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 30

Propagation

• A mechanism where an operation in an aggregate is
implemented by having the aggregate perform that operation on
its parts

• At the same time, properties of the parts are often propagated
back to the aggregate

• Propagation is to aggregation as inheritance is to generalization.

—The major difference is:
- inheritance is an implicit mechanism
- propagation has to be programmed when required

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 31

Interfaces

An interface describes a portion of the visible behaviour of a set of
objects.

• An interface is similar to a class, except it lacks instance variables
and implemented methods

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 32

Notes and descriptive text

• Descriptive text and other diagrams
—Embed your diagrams in a larger document
—Text can explain aspects of the system using any

notation you like

—Highlight and expand on important features, and
give rationale

• Notes:
—A note is a small block of text embedded in a UML

diagram
—It acts like a comment in a programming language

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 33

5.7 Object Constraint Language (OCL)

OCL is a specification language designed to formally
specify constraints in software modules

• An OCL expression simply specifies a logical fact (a
constraint) about the system that must remain true

• A constraint cannot have any side-effects

—it cannot compute a non-Boolean result nor modify
any data.

• OCL statements in class diagrams can specify what the
values of attributes and associations must be

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 34

OCL statements

OCL statements can be built from:
• References to role names, association names, attributes

and the results of operations
• The logical values true and false

• Logical operators such as and, or, =, >, < or <> (not
equals)

• String values such as: ‘a string’
• Integers and real numbers
• Arithmetic operations *, /, +, -

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 35

An example: constraints on Polygons

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 36

5.8 Detailed Example: A Class Diagram for
Genealogy

• Problems

—A person must have two parents

—Marriages not properly accounted for

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 37

Genealogy example: Possible solutions

Open in Umple

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 38

5.9 The Process of Developing Class
Diagrams

You can create UML models at different stages and with
different purposes and levels of details

• Exploratory domain model:
—Developed in domain analysis to learn about the

domain

• System domain model:
—Models aspects of the domain represented by the

system
• System model:

—Includes also classes used to build the user interface
and system architecture

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 39

System domain model vs System model

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 40

System domain model vs System model

• The system domain model omits many classes that are
needed to build a complete system

—Can contain less than half the classes of the system.
—Should be developed to be used independently of

particular sets of
- user interface classes
- architectural classes

• The complete system model includes
—The system domain model
—User interface classes
—Architectural classes
—Utility classes

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 41

Suggested sequence of activities

• Identify a first set of candidate classes
• Add associations and attributes
• Find generalizations
• List the main responsibilities of each class
• Decide on specific operations
• Iterate over the entire process until the model is

satisfactory
—Add or delete classes, associations, attributes,

generalizations, responsibilities or operations
—Identify interfaces
—Apply design patterns (Chapter 6)

 Don’t be too disorganized. Don’t be too rigid either.

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 42

Identifying classes

• When developing a domain model you tend to discover
classes

• When you work on the user interface or the system
architecture, you tend to invent classes

—Needed to solve a particular design problem

—(Inventing may also occur when creating a domain
model)

• Reuse should always be a concern
—Frameworks
—System extensions
—Similar systems

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 43

A simple technique for discovering domain
classes

• Look at a source material such as a description of
requirements

• Extract the nouns and noun phrases
• Eliminate nouns that:

—are redundant
—represent instances
—are vague or highly general
—not needed in the application

• Pay attention to classes in a domain model that represent
types of users or other actors

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 44

Identifying associations and attributes

• Start with classes you think are most central and
important

• Decide on the clear and obvious data it must contain and
its relationships to other classes.

• Work outwards towards the classes that are less
important.

• Avoid adding many associations and attributes to a class
—A system is simpler if it manipulates less

information

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 45

Tips about identifying and specifying valid
associations

• An association should exist if a class
- possesses

- controls

- is connected to

- is related to

- is a part of

- has as parts

- is a member of, or

- has as members

 some other class in your model
• Specify the multiplicity at both ends
• Label it clearly.

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 46

Actions versus associations

• A common mistake is to represent actions as if they were
associations

Bad, due to the use of associations
that are actions

Better: The borrow operation creates a Loan, and
the return operation sets the returnedDate
attribute.

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 47

Identifying attributes

• Look for information that must be maintained about
each class

• Several nouns rejected as classes, may now become
attributes

• An attribute should generally contain a simple value

—E.g. string, number

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 48

Tips about identifying and specifying valid
attributes

• It is not good to have many duplicate attributes

• If a subset of a class’s attributes form a coherent group, then create
a distinct class containing these attributes

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 49

An example (attributes and associations)

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 50

Identifying generalizations and interfaces

• There are two ways to identify generalizations:
—bottom-up

- Group together similar classes creating a new superclass

—top-down
- Look for more general classes first, specialize them if

needed

• Create an interface, instead of a superclass if
—The classes are very dissimilar except for having a

few operations in common
—One or more of the classes already have their own

superclasses
—Different implementations of the same class might be

available

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 51

An example (generalization)

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 52

Allocating responsibilities to classes

A responsibility is something that the system is required to do.
• Each functional requirement must be attributed to one of the classes

—All the responsibilities of a given class should be clearly related.
—If a class has too many responsibilities, consider splitting it into

distinct classes
—If a class has no responsibilities attached to it, then it is probably

useless
—When a responsibility cannot be attributed to any of the existing

classes, then a new class should be created

• To determine responsibilities
—Perform use case analysis
—Look for verbs and nouns describing actions in the system

description

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 53

Categories of responsibilities

• Setting and getting the values of attributes
• Creating and initializing new instances
• Loading to and saving from persistent storage

• Destroying instances
• Adding and deleting links of associations
• Copying, converting, transforming, transmitting or

outputting
• Computing numerical results
• Navigating and searching

• Other specialized work

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 54

An example (responsibilities)

• Creating a new regular flight

• Searching for a flight

• Modifying attributes of a flight

• Creating a specific flight

• Booking a passenger

• Canceling a booking

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 55

Prototyping a class diagram on paper

• As you identify classes, you write their names on small
cards

• As you identify attributes and responsibilities, you list
them on the cards

— If you cannot fit all the responsibilities on one card:
- this suggests you should split the class into two related

classes.

• Move the cards around on a whiteboard to arrange them
into a class diagram.

• Draw lines among the cards to represent associations
and generalizations.

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 56

Identifying operations

Operations are needed to realize the responsibilities of
each class

• There may be several operations per responsibility
• The main operations that implement a responsibility are

normally declared public

• Other methods that collaborate to perform the
responsibility must be as private as possible

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 57

An example (class collaboration)

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 58

Class collaboration ‘a’

Making a bi-directional link between two existing objects;
e.g. adding a link between an instance of SpecificFlight and

an instance of Airplane.

1. (public) The instance of SpecificFlight

— makes a one-directional link to the instance of
Airplane

— then calls operation 2.
2. (non-public) The instance of Airplane

— makes a one-directional link back to the instance
of SpecificFlight

AirplaneSpecificFlight * 0..1

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 59

Class collaboration ‘b’

Creating an object and linking it to an existing object
e.g. creating a FlightLog, and linking it to a
SpecificFlight.

1. (public) The instance of SpecificFlight

—calls the constructor of FlightLog (operation 2)
—then makes a one-directional link to the new

instance of FlightLog.
2. (non-public) Class FlightLog’s constructor

—makes a one-directional link back to the
instance of SpecificFlight.

SpecificFlight

+ createFlightLog [b1]

FlightLog

FlightLog [b2]

0..10..10..10..10..10..11

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 60

Class collaboration ‘c’
Creating an association class, given two existing objects
e.g. creating an instance of Booking, which will link a

SpecificFlight to a PassengerRole.
1. (public) The instance of PassengerRole

— calls the constructor of Booking (operation 2).
2. (non-public) Class Booking’s constructor, among its other actions

— makes a one-directional link back to the instance of
PassengerRole

— makes a one-directional link to the instance of SpecificFlight
— calls operations 3 and 4.

3. (non-public) The instance of SpecificFlight
— makes a one-directional link to the instance of Booking.

4. (non-public) The instance of PassengerRole

— makes a one-directional link to the instance of Booking.

SpecificFlight

+ makeBooking [c1]

Booking

Booking [c2]

PassengerRole

addLinkToBooking [c4]
* ****** addLinkToBooking [c3]

11

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 61

Class collaboration ‘d’

Changing the destination of a link
e.g. changing the Airplane of to a SpecificFlight, from
airplane1 to airplane2

 1. (public) The instance of SpecificFlight

—deletes the link to airplane1
—makes a one-directional link to airplane2
—calls operation 2
—then calls operation 3.

2. (non-public) airplane1
—deletes its one-directional link to the instance of
SpecificFlight.

3. (non-public) airplane2
—makes a one-directional link to the instance of SpecificFlight.

Airplane

addLinkToSpecificFlight [a2, d3]
deleteLinkToSpecificFlight [d2]

SpecificFlight

+ changeAirplane [d1]

* 0..1

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 62

Class collaboration ‘e’

Searching for an associated instance

e.g. searching for a crew member associated with a
SpecificFlight that has a certain name.

1. (public) The instance of SpecificFlight

— creates an Iterator over all the crewMember links of
the SpecificFlight\

— for each of them call operation 2, until it finds a
match.

2. (may be public) The instance of EmployeeRole returns
its name.

SpecificFlight

+ findCrewMember [e1]

EmployeeRole

+ getName [e2]

* *
crewMember

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 63

5.10 Implementing Class Diagrams in Java

• Attributes are implemented as instance variables

• Generalizations are implemented using extends

• Interfaces are implemented using implements

• Associations are normally implemented using instance variables

• Divide each two-way association into two one-way associations
—so each associated class has an instance variable.

• For a one-way association where the multiplicity at the other
end is ‘one’ or ‘optional’

—declare a variable of that class (a reference)

• For a one-way association where the multiplicity at the other
end is ‘many’:

—use a collection class implementing List, such as Vector

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 64

Example: SpecificFlight

class SpecificFlight
{
 private Calendar date;
 private RegularFlight regularFlight;
 ...
 // Constructor that should only be called from
 // addSpecificFlight
 SpecificFlight(Calendar aDate, RegularFlight aRegularFlight)
 {
 date = aDate;
 regularFlight = aRegularFlight;
 }
}

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 65

Example: RegularFlight

class RegularFlight
{
 private List specificFlights;
 ...
 // Method that has primary responsibility
 public void addSpecificFlight(Calendar aDate)
 {
 SpecificFlight newSpecificFlight;
 newSpecificFlight = new SpecificFlight(aDate, this);
 specificFlights.add(newSpecificFlight);
 }
 ...
}

© Lethbridge/Laganière 2005 Chapter 5: Modelling with classes 66

5.11 Difficulties and Risks when creating class
diagrams

• Modeling is particularly difficult skill
—Even excellent programmers have difficulty thinking

at the appropriate level of abstraction
—Education traditionally focus more on design and

programming than modeling

• Resolution:
—Ensure that tem members have adequate training
—Have experienced modeler as part of the team
—Review all models thoroughly

	PowerPoint Presentation
	5.1 What is UML?
	UML diagrams
	UML features
	What constitutes a good model?
	5.2 Essentials of UML Class Diagrams
	Classes
	5.3 Associations and Multiplicity
	Labelling associations
	Analyzing and validating associations
	Slide 11
	Slide 12
	Slide 13
	A more complex example
	Association classes
	Reflexive associations
	Directionality in associations
	5.4 Generalization
	Avoiding unnecessary generalizations
	Avoiding unnecessary generalizations (cont)
	Handling multiple discriminators
	Slide 22
	Avoiding having instances change class
	5.5 Object Diagrams
	Associations versus generalizations in object diagrams
	5.6 More Advanced Features: Aggregation
	When to use an aggregation
	Composition
	Aggregation hierarchy
	Propagation
	Interfaces
	Notes and descriptive text
	5.7 Object Constraint Language (OCL)
	OCL statements
	An example: constraints on Polygons
	5.8 Detailed Example: A Class Diagram for Genealogy
	Genealogy example: Possible solutions
	5.9 The Process of Developing Class Diagrams
	System domain model vs System model
	Slide 40
	Suggested sequence of activities
	Identifying classes
	A simple technique for discovering domain classes
	Identifying associations and attributes
	Tips about identifying and specifying valid associations
	Actions versus associations
	Identifying attributes
	Tips about identifying and specifying valid attributes
	An example (attributes and associations)
	Identifying generalizations and interfaces
	An example (generalization)
	Allocating responsibilities to classes
	Categories of responsibilities
	An example (responsibilities)
	Prototyping a class diagram on paper
	Identifying operations
	An example (class collaboration)
	Class collaboration ‘a’
	Class collaboration ‘b’
	Class collaboration ‘c’
	Class collaboration ‘d’
	Class collaboration ‘e’
	5.10 Implementing Class Diagrams in Java
	Example: SpecificFlight
	Example: RegularFlight
	5.11 Difficulties and Risks when creating class diagrams

