
DUMMY Lab assessment for Software Design and

Modelling

Week 6, Semester 1, 2016

This dummy version is just to give you an idea of the format of the lab
assessment.

Introduction

This assessment is to be done individually on your DICE machines during
the lab session, making use of the tools you have used in the lab sessions so
far.

In order to be able to give students with schedules of adjustments extra
time, the exercise has been designed to be done in 75 minutes. Those given
extra time in exams may use the remaining time, according to their usual
arrangements.

The assessment will be marked out of 20. It is in three parts.

• Part A is worth 10 marks. You can check it yourself using the methods
described below. These checks are not definitive – they don’t check
everything – but if what you submit passes the checks below, you can
expect to get at least 8 marks. Part A is intended to take 30 minutes,
provided you understand the work and the tools well. You will submit
your work, together with the transcript of your checking.

• Part B is worth 6 marks. You are advised not to work on it until you
are confident that you have done Part A well. It is intended to take
30 minutes for those who understand the work and the tools very well,
but might take up to 45 minutes with a few false steps.

• Part C is worth 4 marks. It is intended to challenge students who find
parts A and B easy and do them fast: as you see, a first-class mark can
be obtained without attempting it. You are advised not to attempt it
unless and until you feel you have done Parts A and B well.

1



To submit

Some questions ask you to submit specific files. To do this, use a terminal,
navigate to the directory containing the file, and use some command we’ll
specify for you,

Others ask you to submit your entire Eclipse project. To do this, in
Eclipse, use menu File → Export → General → Archive file. (NB do not
use a Papyrus-specific export menu!) Use the Select All button to select
all your files. (It does not matter if some of them are irrelevant.) Use the
Browse button to choose where to save your archive; be sure to give it the
required name. Then use some command we’ll specify for you.

Some possible question types

All the actual questions are of forms given in this list, but of course, not
all these question types will be asked! There will be 2 questions in each of
parts A, B and C. The questions may not be equally weighted, but you will
be told how many marks there are for each question (though not given the
full markscheme, of course.)

1. Using Papyrus, and calling your project whatever, draw a UML class
diagram showing [some stuff, e.g. specified classes, generalizations,
associations, multiplicities, attributes].

[n marks]

Each question will end with some text about exactly what to submit,
and for part A questions, how to check it

2. Using Papyrus, and calling your project whatever, draw a UML state
diagram showing [some stuff, e.g. specified states, transitions, condi-
tions, starting state]

3. Using Papyrus, and calling your project whatever, draw a UML ac-
tivity diagram diagram showing [some stuff, e.g. specified activities,
flows, forks and joins, decisions and merges]

4. Consider the following class diagram. Write, as simply as possible,
Java code that is consistent with it. Assume some stuff you might
wonder about.

some class diagram here

5. Consider the following sequence diagram. Write, as simply as possible,
Java code that is consistent with it. Assume some stuff you might
wonder about.

some sequence diagram here

2



6. Consider the following state diagram. Write, as simply as possible,
Java code that is consistent with it. Assume some stuff you might
wonder about.

some state diagram here

7. Consider the following situation.

some domain description

In Papyrus, develop a conceptual class model for this situation, in
a model called whatever. Include multiplicities and attributes, where
you can deduce them from the above, but do not concern yourself with
operations.

8. Consider the following lifecycle of a whatever.

some description of things that happen to a whatever and how it changes
state as a results

In Papyrus, develop a state diagram to model a whatever, in a model
called whatever. Choose appropriate states and show transitions be-
tween them. Do not concern yourself with conditions or actions.

9. Consider the following description of a business process.

some description, probably involving a bit of vagueness about order

In Papyrus, develop an activity diagram to model this process. Do not
concern yourself with object flow. Wherever the order of activities is
not clear in the description, show them happening in parallel.

10. Consider the Java code in whatever, in conjunction with the class
diagram Or: the protocol state diagram; Or: the sequence diagram;
Or: some combination of these wherever, could be here, could be in
a project you’re given, in which case I’d tell you how to import it to
view the diagrams. The Java and the UML are inconsistent in several
ways. Assuming that the UML is correct, modify the Java code to be
consistent with it. Or: Assuming the Java is correct, modify the UML
to be consistent with it. Include comments to explain, briefly, what
you have changed and why.

11. This question type would only appear in Part C Consult the UML2.5
standard, provided at file:///group/examreadonly/sdm/. Some
question about it, could be quite challenging: e.g., is the following
UML legal; or, what are the rules about whatever; or, the following
is a rule, but where exactly is it specified; or, comparing how Papyrus
treats some UML feature with how it is specified in the UML standard,
explain what’s wrong in Papyrus.

3



12. This question type would only appear in Part C Consider the following
situation... Using your choice of one or more appropriate UML dia-
grams, design functionality for doing something. Briefly explain your
work in text file whatever, and submit this along with any relevant
diagrams.

4


