Refinement of rules

® Don’t care, don’t write means that a rule only
describes part of its actual context

® many actual contexts are possible (these are all
the possible instances of the rule)

® We refine a rule by making explicit some (or
all) of that missing context

® allows us to examine the relative importance of
different instances

® allows us to fill in “missing context”

Relative importance

base rule

r3
r2
rl

Relative importance (2)

® [or this to make sense, we need to ensure that
the set of refined rules has the same behaviour
as the original rule...

® A refinement is neutral if this is the case

® the appropriate rate constants can be calculated
statically

® the neutral refinement gives a “base line” from
which kinetic pertubations can be made...

“Missing context”

® Suppose we have the rule (from before)
A(b), B(a) -> A(b!l), B(al!l) @ k

® Then somebody tells us that this binding is far
more likely if B is already bound to C...

A(b), B(a,c) -> A(bl!l), B(all,c) @ k;

A(b), B(a,c!) -> A(b!l), B(all,c!) @ k;
® Neutral refinement: k = k; = k»

® QOur desired non-neutral refinement: k; << k

Formally...

® Describe a “soup” as a graph-with-sites (gws)

® An instance of a rule is a gws-homomorphism
from the rule’s LHS to the current soup

® For any choice of “additional context”, we can
find a set (actually multiset) of refinements

® divides the rule into disjoint subcases (but cases
may be repeated...)

® n repeated cases scales the rate constant by n

Refinement summary

® Completely formal notion of rule refinement

® can be used to “split” a rule into several pieces
and evaluate their relative contributions

® Neutral refinements assign rates to the rule
pieces that leave behaviour unchanged

® Kinetic refinement then modifies this, e.g.

® an enzyme may have lower affinity for its product
than its substrate

® GPCRs (bond strength between & and BY)

Refinement (2)

® Another view... refinements reflect small
“pertubations” of a rule:

® expose some previously hidden bit of context

® use non-neutral kinetics to modify behaviour

® A plausible mechanism by which a signalling
network could be subjected to selection

® e.g. different affinities of splice variants

O
N
N
=
o
>N

=
O

=
O
Q
o
V)

<

Pannnnnne

[o Y

-»

S

[o '

A simple cascade:
U->X ->D

®@U(s), X(s~u) -> U(s!l), X(s~ul!l)
U(s!l), X(s!l) -> U(s), X(s)
U(s!l), X(s~ull) -> U(s!l), X(s~p!l)

® X(s~p?,d), D(s~u) -> X(s~p?,d!1l), D(s~u!l)
X(d!1l), D(s!l) => X(d), D(s)

X(d!1l), D(s~u!l) -> X(d!1l), D(s~p!l)

105 -

100-

85 -

80 -

T

70 -

65 -

60 -

Sl

50 -

45 -

40 -

35-

30 -

25 -

20 -

s

10 -

95 \

901 |

T~

———

———
—

0.0

0.5

1.0

1.5

20 25 30 35 40 45
Time

5.0

5.5

6.0 6.5

— [D(i~p?)] — [D(i~u?)] — [X(i~p?)]

[X(i~u?)]

(X)) — [X((!D)]

7.0

7.5

8.0

8.5

9.0

Refining U:
Uu/u2 -> X -> D

® refine the U/TI off rule to:
U(s!l,u~1), X(s!l) -> U(s,u~1l), X(s) @ 1lo

U(s!l,u~-2), X(s!l) -> U(s,u~2), X(s) @ hi

® So U now exists in two distinct forms with
different affinities for the common substrate X

Refining D:
Uu/uU2 -> X -> D/D2

® refine the I/D on rule to:
X(s~p,d), D(s~u,d~1) -> X(s~p,d!l), D(s~u!l,d~1)

X(s~p! ,d), D(s~u,d~-2) -> X(s~p,d!l), D(s~u!l,d~2)
® So D now exists in two distinct forms

® X has two different “binding configurations” (which
depend on whether it is bound or not)

Concentration/Activity

e e e e e e e e e NN N NN NNNNNWWWW
O - N WH VO NOWWOWORKENWLEUOSNO®WO =N W

/ MW«WMWWWWW

O = N W b U1 OO N 0 O

ot
(=}

T T T ™ L - v . T

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

— - = o T T T g —y= -y

50 55 60 65 70 75 80 85 9.0

Time

[active D2] — [active D] [bound active X] [free active X]

Concentration/Activity

85 1

80

75

70

65 1

60 1

SS 1

504

45 |

40 1

35

30 1

25 4

201

151

10 4

[active D2]

[active D]

[bound active X]

[free active X]

Concentration/Activity

85

80

75

70

65

60

2

50

45

40

55

30

25

20

15

10

U and U2; X limited

s

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Time
[active D2] [active D] [bound active X] [free active X]

10.0

Concentration/Activity

U and U2; X in excess

95
90

85

80

75

70

65

60

55

50

45

40

35

30

25

20
15 ~

10

0.0 0.5 1.0 1.5 2.0

25 30 35 40 45 50 55 60 65 7.0 75
Time
[active D2] [active D] [bound active X] [free active X]

8.0

8.5

9.0

9.5

10.0

Specificity summary

o Little leakage (aka specificity):
® U predominantly activates D
® U2 predominantly activates D2
® [f Uand U2 are present,
® |[imited X implies U2 (high affinity) “wins”

® excess X allows both U and U2 to signal

Specificity (2)

® Ve might say that the U2 -> X -> D2
pathway hijacks the original U -> X -> D
pathway (when X is limited)

® Behaves analogously to a transistor!

® An example of network plasticity: the amount of
X determines whether the network behaves as
a transistor or simply as two parallel wires

® 3 “scalpel” to divide a rule into pieces

® 3 possible mechanism of “network evolution™

Another (puzzle)

players and a question

® K -repairs> T1, T2 (as target)
® X also binds H (as helper)
® T2 needs additional H

® how does H know where to go!??

® Swiss knife approach, saturate K with H

® stochastic honey pot approach, uses
refinements too

model |:rules

off KT1' K(t!), T1(k!'1) -> K(t), T1(k) @ 100
'on KT1' K(t), TI(k) -> Kt), TI(K) @ |
'mod KT1' K(t!1),T1(k~no!l) -> K(t!1),T1 (k~yes!) @ 50

'unmod T1' Tl (k~yes?) ->TI(k~no?) @ |

'off KH' K(h!1),H(k!1) -> K(h),H(k) @ 500
'on KH' K(h),H(k) -> K(h!),H(K!|) @ 10

%init: 10 * (K(h,t))
%init: 10 * (H(k))
%init: 100 * (T | (k~yes))

%0bs: T | (k~yes)
%0bs: T | (k~yes!)
%0obs: K(h!)

model |: results

model |: results

simple repair model

T T
[Kth!)] ——

[T1(k~yes!)] ——— |
[T1(k~yes)]

Copy numbers

model 2: rules

'off KT2' K(t!1), T2(k!) -> K(t), T2(k) @ 100
'on KT2' K(t),T2(k) -> K(¢'1), T2(k!l) @ |
'mod KT2' K(t!1),T2(k~no!1) -> K(t!1), T2(k~yes!) @ 50

'unmod T2' T2(k~yes?) ->T2(k~no?) @ |

%init: 10 * (K(h,t))
%init: 10 * (H(k))

%0bs: T | (k~yes)
%0bs: T2(k~yes)
%0bs: K(h!)

Copy numbers

model 2: results

simple repair with T2

W

A DA PP

|
[K(hD)] ——

T2(k~yes)] —— |

[T1(k~yes)]

model 3: rules

e #mod KT2' K(t!1),T2(k~no!l) -> K(t! 1), T2(k~yes!) @ 50
e 'mod KT2' K(t!I,h!), T2(k~no!1) -> K(t!I,h!), T2(k~yes!l) @ 50

model 3: results

repair with H-dependent T2

|
[K(h!)] ——
[T2(k~yes)] ———
[T1(k~yes)]

Copy numbers

model 4: rules

o K(h!lt)H(KI) -> K(h,t),H(k) @ 1000
o K(h!1,t'2),H(K!I),T1(k'2) -> K(h,t'2),H(k),TI(k'2) @ 1000
o K(h!1,t12),H(K!1),T2(k'2) -> K(h,t'2),H(k),T2(k'2) @ 0.001

model 4: results

repair model with H-dependent T2 and refined H dissociation

|
[K(h!_)] ——
[T2(k~yes)] ———
[T1(k~yes)]

Copy numbers

