
Refinement of rules

• Don’t care, don’t write means that a rule only
describes part of its actual context

• many actual contexts are possible (these are all
the possible instances of the rule)

• We refine a rule by making explicit some (or
all) of that missing context

• allows us to examine the relative importance of
different instances

• allows us to fill in “missing context”

Relative importance

Relative importance (2)

• For this to make sense, we need to ensure that
the set of refined rules has the same behaviour
as the original rule...

• A refinement is neutral if this is the case

• the appropriate rate constants can be calculated
statically

• the neutral refinement gives a “base line” from
which kinetic pertubations can be made...

“Missing context”

• Suppose we have the rule (from before)

A(b), B(a) -> A(b!1), B(a!1) @ k

• Then somebody tells us that this binding is far
more likely if B is already bound to C...

A(b), B(a,c) -> A(b!1), B(a!1,c) @ k1

A(b), B(a,c!_) -> A(b!1), B(a!1,c!_) @ k2

• Neutral refinement: k = k1 = k2

• Our desired non-neutral refinement: k1 << k2

Formally...

• Describe a “soup” as a graph-with-sites (gws)

• An instance of a rule is a gws-homomorphism
from the rule’s LHS to the current soup

• For any choice of “additional context”, we can
find a set (actually multiset) of refinements

• divides the rule into disjoint subcases (but cases
may be repeated...)

• n repeated cases scales the rate constant by n

Refinement summary

• Completely formal notion of rule refinement

• can be used to “split” a rule into several pieces
and evaluate their relative contributions

• Neutral refinements assign rates to the rule
pieces that leave behaviour unchanged

• Kinetic refinement then modifies this, e.g.

• an enzyme may have lower affinity for its product
than its substrate

• GPCRs (bond strength between α and βγ)

Refinement (2)

• Another view... refinements reflect small
“pertubations” of a rule:

• expose some previously hidden bit of context

• use non-neutral kinetics to modify behaviour

• A plausible mechanism by which a signalling
network could be subjected to selection

• e.g. different affinities of splice variants

U U2

X

D D2

A specificity puzzle

? ?

A simple cascade:
U -> X -> D

•U(s), X(s~u) -> U(s!1), X(s~u!1)

U(s!1), X(s!1) -> U(s), X(s)

U(s!1), X(s~u!1) -> U(s!1), X(s~p!1)

•X(s~p?,d), D(s~u) -> X(s~p?,d!1), D(s~u!1)

X(d!1), D(s!1) -> X(d), D(s)

X(d!1), D(s~u!1) -> X(d!1), D(s~p!1)

Refining U:
U/U2 -> X -> D

• refine the U/I off rule to:

U(s!1,u~1), X(s!1) -> U(s,u~1), X(s) @ lo

U(s!1,u~2), X(s!1) -> U(s,u~2), X(s) @ hi

•So U now exists in two distinct forms with
different affinities for the common substrate X

Refining D:
U/U2 -> X -> D/D2

• refine the I/D on rule to:

X(s~p,d), D(s~u,d~1) -> X(s~p,d!1), D(s~u!1,d~1)

X(s~p!_,d), D(s~u,d~2) -> X(s~p,d!1), D(s~u!1,d~2)

• So D now exists in two distinct forms

• X has two different “binding configurations” (which
depend on whether it is bound or not)

U only

U2 only

U and U2; X limited

U and U2; X in excess

Specificity summary

• Little leakage (aka specificity):

• U predominantly activates D

• U2 predominantly activates D2

• If U and U2 are present,

• limited X implies U2 (high affinity) “wins”

• excess X allows both U and U2 to signal

Specificity (2)
• We might say that the U2 -> X -> D2

pathway hijacks the original U -> X -> D
pathway (when X is limited)

• Behaves analogously to a transistor!

• An example of network plasticity: the amount of
X determines whether the network behaves as
a transistor or simply as two parallel wires

• a “scalpel” to divide a rule into pieces

• a possible mechanism of “network evolution”

Another (puzzle)

players and a question

• K -repairs> T1, T2 (as target)

• K also binds H (as helper)

• T2 needs additional H

• how does H know where to go??

• Swiss knife approach, saturate K with H

• stochastic honey pot approach, uses
refinements too

model 1: rules
• 'off KT1' K(t!1),T1(k!1) -> K(t),T1(k) @ 100

• 'on KT1' K(t),T1(k) -> K(t!1),T1(k!1) @ 1

• 'mod KT1' K(t!1),T1(k~no!1) -> K(t!1),T1(k~yes!1) @ 50

• 'unmod T1' T1(k~yes?) -> T1(k~no?) @ 1

• 'off KH' K(h!1),H(k!1) -> K(h),H(k) @ 500

• 'on KH' K(h),H(k) -> K(h!1),H(k!1) @ 10

• %init: 10 * (K(h,t))

• %init: 10 * (H(k))

• %init: 100 * (T1(k~yes))

• %obs: T1(k~yes)

• %obs: T1(k~yes!_)

• %obs: K(h!_)

model 1: results

model 1: results

model 2: rules
• 'off KT2' K(t!1),T2(k!1) -> K(t),T2(k) @ 100

• 'on KT2' K(t),T2(k) -> K(t!1),T2(k!1) @ 1

• 'mod KT2' K(t!1),T2(k~no!1) -> K(t!1),T2(k~yes!1) @ 50

• 'unmod T2' T2(k~yes?) -> T2(k~no?) @ 1

• %init: 10 * (K(h,t))

• %init: 10 * (H(k))

• %init: 50 * (T1(k~yes))

• %init: 50 * (T2(k~yes))

• %obs: T1(k~yes)

• %obs: T2(k~yes)

• %obs: K(h!_)

model 2: results

model 3: rules

• #'mod KT2' K(t!1),T2(k~no!1) -> K(t!1),T2(k~yes!1) @ 50

• 'mod KT2' K(t!1,h!_),T2(k~no!1) -> K(t!1,h!_),T2(k~yes!1) @ 50

model 3: results

model 4: rules

• #'off KH' K(h!1),H(k!1) -> K(h),H(k) @ 500

• K(h!1,t),H(k!1) -> K(h,t),H(k) @ 1000

• K(h!1,t!2),H(k!1),T1(k!2) -> K(h,t!2),H(k),T1(k!2) @ 1000

• K(h!1,t!2),H(k!1),T2(k!2) -> K(h,t!2),H(k),T2(k!2) @ 0.001

model 4: results

