
Refinement of rules

• Don’t care, don’t write means that a rule only 
describes part of its actual context

• many actual contexts are possible (these are all 
the possible instances of the rule)

• We refine a rule by making explicit some (or 
all) of that missing context

• allows us to examine the relative importance of 
different instances

• allows us to fill in “missing context”



Relative importance



Relative importance (2)

• For this to make sense, we need to ensure that 
the set of refined rules has the same behaviour 
as the original rule...

• A refinement is neutral if this is the case

• the appropriate rate constants can be calculated 
statically

• the neutral refinement gives a “base line” from 
which kinetic pertubations can be made...



“Missing context”

• Suppose we have the rule (from before)

A(b), B(a) -> A(b!1), B(a!1) @ k

• Then somebody tells us that this binding is far 
more likely if B is already bound to C...

A(b), B(a,c) -> A(b!1), B(a!1,c) @ k1

A(b), B(a,c!_) -> A(b!1), B(a!1,c!_) @ k2

• Neutral refinement: k = k1 = k2

• Our desired non-neutral refinement: k1 << k2



Formally...

• Describe a “soup” as a graph-with-sites (gws)

• An instance of a rule is a gws-homomorphism 
from the rule’s LHS to the current soup

• For any choice of “additional context”, we can 
find a set (actually multiset) of refinements

• divides the rule into disjoint subcases (but cases 
may be repeated...)

• n repeated cases scales the rate constant by n



Refinement summary

• Completely formal notion of rule refinement

• can be used to “split” a rule into several pieces 
and evaluate their relative contributions

• Neutral refinements assign rates to the rule 
pieces that leave behaviour unchanged

• Kinetic refinement then modifies this, e.g.

• an enzyme may have lower affinity for its product 
than its substrate

• GPCRs (bond strength between α and βγ)



Refinement (2)

• Another view... refinements reflect small 
“pertubations” of a rule:

• expose some previously hidden bit of context

• use non-neutral kinetics to modify behaviour

• A plausible mechanism by which a signalling 
network could be subjected to selection

• e.g. different affinities of splice variants
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A simple cascade:
U -> X -> D

•U(s), X(s~u) -> U(s!1), X(s~u!1)

U(s!1), X(s!1) -> U(s), X(s)

U(s!1), X(s~u!1) -> U(s!1), X(s~p!1)

•X(s~p?,d), D(s~u) -> X(s~p?,d!1), D(s~u!1)

X(d!1), D(s!1) -> X(d), D(s)

X(d!1), D(s~u!1) -> X(d!1), D(s~p!1)





Refining U:
U/U2 -> X -> D

• refine the U/I off rule to:

U(s!1,u~1), X(s!1) -> U(s,u~1), X(s) @ lo

U(s!1,u~2), X(s!1) -> U(s,u~2), X(s) @ hi

•So U now exists in two distinct forms with 
different affinities for the common substrate X



Refining D:
U/U2 -> X -> D/D2

• refine the I/D on rule to:

X(s~p,d), D(s~u,d~1) -> X(s~p,d!1), D(s~u!1,d~1)

X(s~p!_,d), D(s~u,d~2) -> X(s~p,d!1), D(s~u!1,d~2)

• So D now exists in two distinct forms

• X has two different “binding configurations” (which 
depend on whether it is bound or not)



U only



U2 only



U and U2; X limited



U and U2; X in excess



Specificity summary

• Little leakage (aka specificity):

• U predominantly activates D

• U2 predominantly activates D2

• If U and U2 are present,

• limited X implies U2 (high affinity) “wins”

• excess X allows both U and U2 to signal



Specificity (2)
• We might say that the U2 -> X -> D2 

pathway hijacks the original U -> X -> D 
pathway (when X is limited)

• Behaves analogously to a transistor!

• An example of network plasticity: the amount of 
X determines whether the network behaves as 
a transistor or simply as two parallel wires

• a “scalpel” to divide a rule into pieces

• a possible mechanism of “network evolution”



Another (puzzle)



players and a question

• K -repairs> T1, T2 (as target)

• K also binds H (as helper)

• T2 needs additional H 

• how does H know where to go??

• Swiss knife approach, saturate K with H

• stochastic honey pot approach, uses 
refinements too



model 1: rules
• 'off KT1' K(t!1),T1(k!1) -> K(t),T1(k) @ 100

• 'on KT1' K(t),T1(k) -> K(t!1),T1(k!1) @ 1

• 'mod KT1' K(t!1),T1(k~no!1) -> K(t!1),T1(k~yes!1) @ 50

• 'unmod T1' T1(k~yes?) -> T1(k~no?) @ 1

• 'off KH' K(h!1),H(k!1) -> K(h),H(k) @ 500

• 'on KH' K(h),H(k) -> K(h!1),H(k!1) @ 10

• %init: 10 * (K(h,t))

• %init: 10 * (H(k))

• %init: 100 * (T1(k~yes))

• %obs: T1(k~yes)

• %obs: T1(k~yes!_)

• %obs: K(h!_)



model 1: results



model 1: results



model 2: rules
• 'off KT2' K(t!1),T2(k!1) -> K(t),T2(k) @ 100

• 'on KT2' K(t),T2(k) -> K(t!1),T2(k!1) @ 1

• 'mod KT2' K(t!1),T2(k~no!1) -> K(t!1),T2(k~yes!1) @ 50

• 'unmod T2' T2(k~yes?) -> T2(k~no?) @ 1

• %init: 10 * (K(h,t))

• %init: 10 * (H(k))

• %init: 50 * (T1(k~yes))

• %init: 50 * (T2(k~yes))

• %obs: T1(k~yes)

• %obs: T2(k~yes)

• %obs: K(h!_)



model 2: results



model 3: rules

• #'mod KT2' K(t!1),T2(k~no!1) -> K(t!1),T2(k~yes!1) @ 50

• 'mod KT2' K(t!1,h!_),T2(k~no!1) -> K(t!1,h!_),T2(k~yes!1) @ 50



model 3: results



model 4: rules

• #'off KH' K(h!1),H(k!1) -> K(h),H(k) @ 500

• K(h!1,t  ),H(k!1) ->          K(h,t  ),H(k) @ 1000

• K(h!1,t!2),H(k!1),T1(k!2) ->  K(h,t!2),H(k),T1(k!2)  @ 1000

• K(h!1,t!2),H(k!1),T2(k!2)  -> K(h,t!2),H(k),T2(k!2) @ 0.001



model 4: results


