Refinement of rules

® Don’t care, don’t write means that a rule only
describes part of its actual context

® many actual contexts are possible (these are all
the possible instances of the rule)

® We refine a rule by making explicit some (or
all) of that missing context

® allows us to examine the relative importance of
different instances

® allows us to fill in “missing context”
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Relative importance (2)

® [or this to make sense, we need to ensure that
the set of refined rules has the same behaviour
as the original rule...

® A refinement is neutral if this is the case

® the appropriate rate constants can be calculated
statically

® the neutral refinement gives a “base line” from
which kinetic pertubations can be made...




“Missing context”

® Suppose we have the rule (from before)
A(b), B(a) -> A(b!l), B(al!l) @ k

® Then somebody tells us that this binding is far
more likely if B is already bound to C...

A(b), B(a,c) -> A(bl!l), B(all,c) @ k;

A(b), B(a,c! ) -> A(b!l), B(all,c! ) @ k;
® Neutral refinement: k = k; = k»

® QOur desired non-neutral refinement: k; << k




Formally...

® Describe a “soup” as a graph-with-sites (gws)

® An instance of a rule is a gws-homomorphism
from the rule’s LHS to the current soup

® For any choice of “additional context”, we can
find a set (actually multiset) of refinements

® divides the rule into disjoint subcases (but cases
may be repeated...)

® n repeated cases scales the rate constant by n




Refinement summary

® Completely formal notion of rule refinement

® can be used to “split” a rule into several pieces
and evaluate their relative contributions

® Neutral refinements assign rates to the rule
pieces that leave behaviour unchanged

® Kinetic refinement then modifies this, e.g.

® an enzyme may have lower affinity for its product
than its substrate

® GPCRs (bond strength between & and BY)




Refinement (2)

® Another view... refinements reflect small
“pertubations” of a rule:

® expose some previously hidden bit of context

® use non-neutral kinetics to modify behaviour

® A plausible mechanism by which a signalling
network could be subjected to selection

® e.g. different affinities of splice variants
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A simple cascade:
U->X ->D

®@U(s), X(s~u) -> U(s!l), X(s~ul!l)
U(s!l), X(s!l) -> U(s), X(s)
U(s!l), X(s~ull) -> U(s!l), X(s~p!l)

® X(s~p?,d), D(s~u) -> X(s~p?,d!1l), D(s~u!l)
X(d!1l), D(s!l) => X(d), D(s)

X(d!1l), D(s~u!l) -> X(d!1l), D(s~p!l)
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Refining U:
Uu/u2 -> X -> D

® refine the U/TI off rule to:
U(s!l,u~1), X(s!l) -> U(s,u~1l), X(s) @ 1lo

U(s!l,u~-2), X(s!l) -> U(s,u~2), X(s) @ hi

® So U now exists in two distinct forms with
different affinities for the common substrate X




Refining D:
Uu/uU2 -> X -> D/D2

® refine the I/D on rule to:
X(s~p,d), D(s~u,d~1) -> X(s~p,d!l), D(s~u!l,d~1)

X(s~p! ,d), D(s~u,d~-2) -> X(s~p,d!l), D(s~u!l,d~2)
® So D now exists in two distinct forms

® X has two different “binding configurations” (which
depend on whether it is bound or not)




Concentration/Activity

e e e e e e e e e NN N NN NNNNNWWWW
O - N WH VO NOWWOWORKENWLEUOSNO®WO =N W

/ MW«WMWWWWW

O = N W b U1 OO N 0 O

ot
(=}

T T T ™ L - v . T

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

— - = o T T T g —y= -y

50 55 60 65 70 75 80 85 9.0

Time

[active D2] — [active D] [bound active X] [free active X]




Concentration/Activity
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Concentration/Activity
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Concentration/Activity

U and U2; X in excess
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Specificity summary

o Little leakage (aka specificity):
® U predominantly activates D
® U2 predominantly activates D2
® [f Uand U2 are present,
® |[imited X implies U2 (high affinity) “wins”

® excess X allows both U and U2 to signal




Specificity (2)

® Ve might say that the U2 -> X -> D2
pathway hijacks the original U -> X -> D
pathway (when X is limited)

® Behaves analogously to a transistor!

® An example of network plasticity: the amount of
X determines whether the network behaves as
a transistor or simply as two parallel wires

® 3 “scalpel” to divide a rule into pieces

® 3 possible mechanism of “network evolution™




Another (puzzle)




players and a question

® K -repairs> T1, T2 (as target)
® X also binds H (as helper)
® T2 needs additional H

® how does H know where to go!??

® Swiss knife approach, saturate K with H

® stochastic honey pot approach, uses
refinements too




model |:rules

off KT1' K(t!), T1(k!'1) -> K(t), T1(k) @ 100
'on KT1' K(t), TI(k) -> Kt ), TI(K) @ |
'mod KT1' K(t!1),T1(k~no!l) -> K(t!1),T1 (k~yes! ) @ 50

'unmod T1' Tl (k~yes?) ->TI(k~no?) @ |

'off KH' K(h!1),H(k!1) -> K(h),H(k) @ 500
'on KH' K(h),H(k) -> K(h!),H(K!|) @ 10

%init: 10 * (K(h,t))
%init: 10 * (H(k))
%init: 100 * (T | (k~yes))

%0bs: T | (k~yes)
%0bs: T | (k~yes! )
%0obs: K(h! )



model |: results




model |: results

simple repair model
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model 2: rules

'off KT2' K(t!1), T2(k! ) -> K(t), T2(k) @ 100
'on KT2' K(t),T2(k) -> K(¢'1), T2(k!l) @ |
'mod KT2' K(t!1),T2(k~no!1) -> K(t!1), T2(k~yes! ) @ 50

'unmod T2' T2(k~yes?) ->T2(k~no?) @ |

%init: 10 * (K(h,t))
%init: 10 * (H(k))

%0bs: T | (k~yes)
%0bs: T2(k~yes)
%0bs: K(h! )




Copy numbers

model 2: results

simple repair with T2
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model 3: rules

e #mod KT2' K(t!1),T2(k~no!l) -> K(t! 1), T2(k~yes! ) @ 50
e 'mod KT2' K(t!I,h! ), T2(k~no!1) -> K(t!I,h! ), T2(k~yes!l) @ 50




model 3: results

repair with H-dependent T2
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model 4: rules

o K(h!lt )H(KI) -> K(h,t ),H(k) @ 1000
o K(h!1,t'2),H(K!I),T1(k'2) -> K(h,t'2),H(k),TI(k'2) @ 1000
o K(h!1,t12),H(K!1),T2(k'2) -> K(h,t'2),H(k),T2(k'2) @ 0.001




model 4: results

repair model with H-dependent T2 and refined H dissociation
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