SBM O/Monday Sep 29: Introduction

SBM -1/Thursday Oct 2: íGEM (Chrís French)

SBM -2/Monday Oct 6: random graphs 1

SBM -3/Thursday Oct 9: random graphs 2

SBM -4/Monday Oct 13: network rewiring (after Wendell Lim)

Thursday Oct 16: no course!

SBM -5/Monday Oct 20: pseudo prey-predator ecosystem

SBM -6/Thursday Oct 23: compilation to Bio-Bricks (Michael Pedersen)

SBM -7/Monday Oct 27: modular proteíns (María-L. Guerríero)

ppí-traíler

ppí-traíler

ppí-traíler

ppí-traíler

ppi-trailer

SBM-5

Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics (2008) Lim et al Science 319

Active site

Docking interactions

Modular domains

Scaffolds/adapters

modular proteíns (María-Luísa)

us: abstract jargon of solid/liquid DD/PP/PD wires

to discuss at the end

us: abstract jargon of solid/liquid DD/PP/PD wires

to discuss at the end

us: abstract jargon of solid/liquid DD/PP/PD wires

to discuss at the end

BELIEF/perspective:

1) the manipulations to come -because they are very successful, simple as they areestablish the flexibility (aka reprogrammability, versatility, plasticity, evolvability) of signalling networks; 2) they mirror what variation/selection does

Uses 2 bio-engineering "wires"

1. heterodimerisation PP liquid wire

pairs of leucine zippers (available in different Kd's -over a range of 10^3)

2. transcriptional DD solid wire

mating-responsive promoters Pmr (available in different strengths pFIG1 or pPRM2)

```
This gives the following concatenations (aka fusions):

- proteins: Ste5:zip, Msg5:zip', Ste20:zip'

(the last two known to have respectively -ve, +ve influence on response)

- genes: Pmr::Msg5:zip', Pmr::Ste20:zip', and Pmr::GST:zip

(neutral -used as a decoy)
```

Uses 2 bio-engineering "wires"

1. heterodimerisation PP liquid wire

pairs of leucine zippers (available in different Kd's -over a range of 10^3)

2. transcriptional DD solid wire

mating-responsive promoters Pmr (available in different strengths pFIG1 or pPRM2)

```
This gives the following concatenations (aka fusions):

- proteins: Ste5:zip, Msg5:zip', Ste20:zip'

(the last two known to have respectively -ve, +ve influence on response)

- genes: Pmr.: Msg5:zip', Pmr::Ste20:zip', and Pmr::GST:zip

(neutral -used as a decoy)
```

Uses 2 bio-engineering "wires"

1. heterodimerisation PP liquid wire

pairs of leucine zippers (available in different Kd's -over a range of 10^3)

2. transcriptional DD solid wire

mating-responsive promoters Pmr (available in different strengths pFIG1 or pPRM2)

```
This gives the following concatenations (aka fusions):

- proteins: Ste5:zip, Msg5:zip', Ste20:zip'

(the last two known to have respectively -ve, +ve influence on response)

- genes: Pmr: Msg5:zip', Pmr::Ste20:zip', and Pmr::GST:zip

(neutral -used as a decoy)
```

concatenations and wires (cont')

anscriptional (DNA/DNA) solid wire						
pal	ATG Xhol		BamHI	TAG Noti	- Sa	
Promoter		Effector/Decoy	Zippe	er ADH1 Termi	inator	
ADH1	-	MSG5				
CYC1		STE50				
STE5		GST				
FIG1						
PRM2						

anscriptional (DNA/DNA) solid wire							
bal	ATG Xhol		BamHI		TAG Noti]	- Sa
Promoter		Effector/Decoy		Zipper		ADH1 Termina	tor
ADH1	-	MSG5					
CYC1		STE50					
STE5		GST					
FIG1							
PRM2							

anscriptional (Dilh/Dilh) solid mite							
pal	ATG Xhol		BamHI		TAG Noti		• Sa
Promoter		Effector/Decoy	2	Zipper		ADH1 Term	inator
ADH1	_	MSG5					
CYC1		STE50					
STE5		GST					
FIG1	8						

The constructs/5 steps

 separate compilation: constitutive Msg5:lzip, Ste20:lzip ← we verify that they are indeed modulators

2. simple -ve and +ve FB with induced -ve or +ve modulators \leftarrow loops

з. tuning the above with various lzip and promoter strengths

4a. constitutive -ve and induced +ve, and symmetrically \leftarrow introducing conflict

4b. constitutive decoy and induced -ve, and symmetrically \Leftarrow 3rd party

The constructs/5 steps

1. separate compilation: constitutive Msg5:lzip, Ste20: $lzip \leftarrow$ we verify that they are indeed modulators

2. simple -ve and +ve FB with induced -ve or +ve modulators \leftarrow loops

з. tuning the above with various lzip and promoter strengths

4a. constitutive -ve and induced +ve, and symmetrically \leftarrow introducing conflict

4b. constitutive decoy and induced -ve, and symmetrically \Leftarrow 3rd party

1. constitutive Msg5:lzip, Ste20:lzip \leftarrow we verify that they are indeed modulators

2. simple -ve and +ve FB with induced -ve or +ve modulators \leftarrow loops

2. simple -ve and +ve FB with induced -ve or +ve modulators \leftarrow loops

2. simple -ve and +ve FB with induced -ve or +ve modulators \leftarrow loops

3. tuning the above with various lzip and promoter strengths

3. tuning the above with various lzip and promoter strengths

з. tuning the above with various lzip and promoter strengths

4a. constitutive -ve and induced +ve, and symmetrically \Leftarrow introducing conflict

4a. constitutive -ve and induced +ve, and symmetrically \Leftarrow introducing conflict

4a. constitutive -ve and induced +ve, and symmetrically \Leftarrow introducing conflict

4b. constitutive decoy and induced -ve, and symmetrically

4b. constitutive decoy and induced -ve, and symmetrically

4b. constitutive decoy and induced -ve, and symmetrically

✓ Elo approach where all this is done at once combinatorially?
 ✓ This is all going through a slow transcriptional step
 ✓ is it concentration/gradient or binding??
 ✓ leucine-zipper physically flexible?

aside: the behaviour classifiers (CTL-ish)

