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1 Chemosensor modeling in space - SBM3-2011

We want to model the spatial distribution of chemosensor clusters; specifically their observed
periodic distribution. We consider a grid model with periodic boundary on the y axis, and the x
axis representing E. Coli’s pole to pole axis (the cylinder one). We insert new receptors at a rate
which scales up with the number of free sites on the grid (one can imagine a regulation in eColi
doing this), and we move them around to simulate diffusion. The grid grows in the x direction.

The model is taken from Wang et al. Self-organized periodicity of protein clusters in growing
bacteria, 2008.

§Outline -

We will consider in turn:
- the model state space (ie how you describe the state of the system at a given time)
- event types (aka transitions between states)
- event rates (average number of times they are triggered per time unit)
- some small computation to ensure that the receptor density is kept roughly constant
- see an example of a simple diffusion equation and solution and how one can use this to under-
stand why clusters appear mostly at middle points
- discuss in general the principle of Metropolis simulation which is used in this model (as in many
others) and is based on the introduction of an energy functional
- discuss the price of lost freedom (here α is a generic energy-based technique to penalize glueing,
and the ensueing loss of freedom)
- discuss how one can make a rule-based version of this model and why

§state space -

Here we have a grid and any place can be either busy or free. This gives:

S(t) = Lx(t)× Ly → {0, 1}
Interestingly S changes over time (growth). A state is an allocation σ(i, j) ∈ {0, 1} for (i, j)
points on the grid, 0 ≤ i < Lx(t), 0 ≤ j < Ly.

We will say a receptor is free when it has no neighbouring receptor on the grid (so a 1 with
0s around in our encoding).
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It is useful also to consider the projection to N2 defined as σ 7→ (N,n) where:
- N = LxLy is the total number of sites,
- n is the total number of receptors (ie of 1s in σ),

Equally, we coud project on Lx, n as it contains the same information (given Ly).

From which we can derive ρ(t) = n(t)/N(t) for the receptor density, which in the model will
be kept around 0.2. Talking about which, we have to be careful. As we inject matter and grow
space at the same time, we might grow too quickly and get a very dilute universe (not very
interesting for a model that serves as a tool to study cluster formation). If on the other hand the
density is too high, we will surely have just one large cluster (not interesting either). So do we (or
does eColi) want an expansive/contracting universe? 20% density seems a reasonable target. But
how do we fix the density? We will do a small calculation next paragraph to get a computational
handle on that.

§growth and average density -

We have exponential growth in direction x, ∂tLx(t) = γLx(t).

By the growth law, the average cell length (in some length unit) is:

Lx(t) = Lx(0)eγt (1)

and so the average total number of places (or sites) is:

N(t) = N(0)eγt (2)

On the other hand, still on average:

∂tn(t) = k(N(t)− n(t)) (3)

with solution (C a constant):

n(t) = Ce−kt +
k

k + γ
N(t) (4)

Hence the steady state value of the density is
k

k + γ
= (1 + γ/k)−1 = 0.2.

Verify this makes sense to you qualitatively. Why does it only depend on γ and k. It is a piece
of the dynamics that happens entirely in the projection mentioned earlier. Why is it important
to control the density? Is it observable biologically?

§Elementary events in the model - rates

We have events of the following type:
- growth at rate γ, a grid column is duplicated
- insertion of new receptors, at rate k, one receptor is added to a free site on the grid
- diffusion of single receptors, at rate δ, one free receptor diffuses to a nearby free site on the
grid
- binding/unbinding with energy E based on 1) a coupling term J , ie −J < 0 per bond (or
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neighbour-neighbour instance) and 2) an entropy cost for loss of freedom αJ , ie αJ > 0 per
non-free receptor

In the model diffusion and binding are seen as one combined event. The diffusion/binding
event type is implemented by a Metropolis algorithm, where the probability of a transition
depends on the ∆E incurred by the transition. We do not need δ for Metropolis, as we will see.
In a more refined model, one could (but would not have to) distinguish these events.

Caevat: it is important to understand that rates γ, k, δ (derived from D) are microscopic
rates, ie per event of the given type; not to be confused with the rates at which the event type
itself fires.

§diffusion - 1D case

We can do another small calculation to understand why new clusters appear at middle points
between older ones.

Suppose a 1-dimensional space defined x ∈ R. We have that

n(x, t) ∝ t−1/2e−x2/4Dt (5)

is a solution to the diffusion equation with an initial condition n(x, 0) = δ(x) (Dirac function)
expressing the presence of a definite amount of stuff at the start (as opposed to a continuous
injection of new matter; Dirichlet condition vs Neumann condition):

∂tn(x, t) = D∂x2n(x, t) (6)

as both sides of the equation are equal to (e−x
2/(4Dt)(x2 − 2Dt))/(4Dt5/2) (as one can verify

from alpha).

The missing constant is given by the constraint that
∫ +∞
−∞ t−1/2e−x

2/4Dt dx = n0, which says
that nothing disappears or appears, things just diffuse.

If we set λ =
√

2Dt for the diffusion length, so that n(x, t) ∝ t−1/2e−x
2/2λ2

, we recognise a
Gaussian with standard deviation λ, which we can interpret as the typical distance to origin for
a particle travelling for t time units (randomness slows it by a square root so to speak).

Eg if D = 0.018µm2s−1, then after 2.5s, a particle has typically moved
√

0.18µm ' 0.4µm
away from its original position, so about 1/5 of EColi’s length.

§diffusion - 1D case with sinks

It is easy to see that the steady state solution to diffusion ∂xxn(x) = 0 on an interval [0, `], with
sinks at both ends, meaning meaning n(0, t) = n(`, t) = 0 (clusters on each side are considered
as sinks), is:

n(x) = k/2D · ((`/2)2 − (x− `/2)2) (7)

so peaks at `/2 which explains (or goes some way to explain) why clusters appears at middle
points.
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Figure 1: 1d diffusion, y is time.

§energy deltas - insertions and diffusions

The key to the simulation (Metropolis or rule-based) is to be able to compute the variation of
energy consecutive to an event. According to our definition, the total energy in state x is:

E(x) =

(
−J
αJ

)
·
(

β(x)
n− φ(x)

)
(8)

where n is the number of nodes in x, φ(x) ≤ n is the number of free nodes in x, β(x) is the
number of bonds in x.

Recall that by convention, the lower the energy the more likely the state. We see that the two
energy terms above are pulling in opposite directions (as always). The first wants many bonds
to be formed (≤ 4), the second wants many free receptors to be created (≤ 4). The parameter α
arbitrates between the two possibilities. When α = 0, the energy function is a two-dimensional
Ising model, for which the critical interaction strength is known to be Jc ≈ 1.763 (Onsager, 1943).
Above that one can have multiple islands/groups of 1s and 0s (Weiss domains). If α becomes
large, losing freedom becomes more expensive, and clusters will be smaller.

We can compute the energy landscape, ie the ∆Es. In general, along a transition from x to
y (by insertion or diffusion) we have:

∆E =

(
−J
αJ

)
·
(

β(y)− β(x)
n(y)− n(x) + φ(x)− φ(y)

)
which gives for an insertion:

∆Ei =

(
−J
αJ

)
·
(
βi
φi

)
where 0 ≤ βi ≤ 4 is the number of neighbours of the inserted receptor, φi = 1 + φ(x) − φ(y) is
the number of receptor ‘trapped’ by the inserted one (himself included).
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For a diffusion:

∆Ed =

(
−J
αJ

)
·
(
βd
φd

)
where −3 ≤ βd ≤ 3 is the number of bonds created by the moving receptor minus the number
broken; φd = φ(x)− φ(y).

We will now make a complete computation of the above in the 1d case with a circular grid.

§balances - insertion case

To minimize the size of neighbourhoods that one must incorporate in the rules below, it is
convenient to store the state of freedom/business as a state of the agent itself (we could even
store its current degree), here an anonymous agent () with two sites one for f/b the state of
freedom of the agent, one for 0/1 the presence of a receptor.

This gives the following balances for insertions (1d case, no boundary):

(f, 1)(0)(f, 1)→ (b, 1)(b, 1)(b, 1) −2J + 3αJ
(f, 1)(0)(b, 1)→ (b, 1)(b, 1)(b, 1) −2J + 2αJ
(b, 1)(0)(f, 1)→ (b, 1)(b, 1)(b, 1) −2J + 2αJ
(b, 1)(0)(b, 1)→ (b, 1)(b, 1)(b, 1) −2J + αJ

(f, 1)(0)(0)→ (b, 1)(b, 1)(0) −J + 2αJ
(0)(0)(f, 1)→ (0)(b, 1)(b, 1) −J + 2αJ
(b, 1)(0)(0)→ (b, 1)(b, 1)(0) −J + αJ
(0)(0)(b, 1)→ (0)(b, 1)(b, 1) −J + αJ

(0)(0)(0)→ (0)(f, 1)(0) 0

This gives the following balances for diffusions (1d case, no boundary, diffusion to the left):

(f, 1)(0)(b, 1)(b, 1)→ (b, 1)(b, 1)(0)(?, 1) αJ if ? = b, 0 else
(b, 1)(0)(b, 1)(b, 1)→ (b, 1)(b, 1)(0)(?, 1) 0 if ? = b, −αJ else

(0)(0)(b, 1)(b, 1)→ (0)(f, 1)(0)(?, 1) J − αJ if ? = b, J − 2αJ else
(f, 1)(0)(f, 1)(0)→ (b, 1)(b, 1)(0)(0) −J + 2αJ
(b, 1)(0)(f, 1)(0)→ (b, 1)(b, 1)(0)(0) −J + αJ

(0)(0)(f, 1)(0)→ (0)(f, 1)(0)(0) 0

Likewise one has diffusion to the right.

We see that one needs the degree to completely eliminate the need to compute the ∆E when
applying a move. One might call this a static compilation of the Metropolis moves. More later.

With our numerical values, α = 0.5, −J + 2αJ = 0 so the formation of a dimer is energy
neutral (see diffusion step 4 above).

§Numerically - mind the units

We have:
- J, α = 4, 0.5 so well above the Onsager threshold
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- Ly = 50 that is fixed (does not have to be!)
- Lx(0) = 20
- γ, k = 8× 10−6, 2× 10−6s−1

For an explicit modeling of diffusion, D = 0.018µm2s−1 which is related to the discrete
diffusion coefficient δ by h2δ = D, h = `y/Ly, `y the actual dimension along y (we could take x
as well) approximately `y = 3µm.

Numbers taken from Moran et al. SnapShot: key numbers in biology. Cell (2010) vol. 141:7
p1262.

2 Quick reminder on CTMCs

A random exponential time of parameter λ > 0 is an [0,+∞)-valued random variable T such
that p(T > t) = exp(−λt). Thus, the density of T is λ exp(−λt), for t ≥ 0; and T ’s mean is∫ +∞
0

λ exp(−λt)t dt = λ−1.

Suppose given a set X which is at most countably infinite, and a rate function q(x, y) ∈ R+,
for x, y in X, and x 6= y.

The transition graph or the support of q, written |q|, is the binary relation, or the directed
graph, on X which contains (x, y) iff q(x, y) > 0.

We suppose |q| has finite out-degree (this also called being image-finite).

We can define a continuous-time Markov chain over X in the following way. When the chain
is at x in X, for each of the finitely many ys such that q(x, y) > 0, draw a random exponential
time τ(x, y) with parameter q(x, y); advance time by τ = min τ(x, y), and jump to the (almost
surely) unique y such that τ(x, y) = τ .

The idea is that all possible next states compete, and the higher the rate of q(x, y), the more
likely it is that y will be the next state. It is easy to calculate that the probability to jump to
y is actually q(x, y)/

∑
z q(x, z); and that for small ts, the probability to jump to x within t is

equivalent to q(x, y)t, hence one can think of q(x, y) as the rate at which one jumps from x to y.

Note that for the above definition to make sense it is important to suppose as we have done
that |q| is image-finite. We will also suppose thereafter that |q| is symmetric (not to be confused
with the much stronger assumption that q is a symmetric function, ie q(x, y) = q(y, x)), and
define ρ(x, y) = q(y, x)/q(x, y) when either (equivalently both) of q(x, y) and q(y, x) are > 0.

2.1 Equilibrium

Now, on to the definition of an equilibrium that will be our central concern here.

Consider a function p defined on X and with values in R+. One says p is an equilibrium for
q if p is not everywhere zero, and:
- [detailed balance] for all (x, y) ∈ |q|, p(x)q(x, y) = q(y, x)p(y)
- [convergence] Z =

∑
X p(x) < +∞

If such a p exists, we can obtain a probability on X by normalizing p as p/Z. Naturally, if X
is finite the second condition always holds.

The detailed balance condition implies that p, construed as a probabilistic state of the system,
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is a fixed point of the action of the chain q, and as |q| is symmetric, regardless of the initial state,
the chain will converge to p.

3 The Metropolis-Hastings dtMC structure

We assume:
- an energy function E : X → R on a countable state space X
- an a priori symmetric irreflexive (α(x, x) = 0) Markov kernel α on X

With this data, we can define a discrete-time Markov chain (dtMC) as a process that mostly
but not always follows lines of decreasing energy (gradient-driven). The idea is that α will select
a priori a candidate transition which we then might accept with a certain probability. If energy
diminishes along that transition (modulo an α-related correction, see below) we take it certainly;
if it increases we take it with a decreasing probability (as we are reluctant to climb up the energy
landscape).

Note that the α kernel defines the transition graph.

Define for α(x, y) > 0 (equivalently α(y, x) > 0):

β(x, y) = min(1, eE(x)α(x, y)−1 · e−E(y)α(y, x)) acceptance probability
p(x, y) = α(x, y)β(x, y) total motion probability

In case of a rejection, we stay at x, which completes the definition of the transition function:

p(x, x) = 1−∑y 6=x α(x, y)β(x, y) null event probability

So - supposing wlog β(x, y) ≤ 1 - we do get discrete detailed balance1 wrt E:

p(y, x)/p(x, y) = α(y, x)/α(x, y) · β(y, x)/β(x, y)
= α(y, x)/α(x, y) · e−E(x)α(x, y) · eE(y)α(y, x)−1

= eE(y) · e−E(x)

Note that this probability equipment preserves the underlying transition graph defined by α
- as β(x, y) is never zero. In particular, it is still symmetric (hence irreducible; it also preserves
aperiodicity). Only the transition probabilities are altered (and loops introduced). Unless x is
a local max for E,

∑
y 6=x p(x, y) < 1, and the remaining mass is converted into p(x, x) the

probability of staying put at x.

If α is uniform and the underlying transition graph is regular (with finite and non-zero out-
degree, as in for instance our 1d model above where every node has degree 2), then β(x, y) accepts
certainly if ∆E := E(y)−E(x) ≤ 0 - or else with probability exp(−∆E) ≤ 1. This case is called
Metropolis.

One can extend the above to ∆E = +∞ - then β(x, y) = 0 for infinite ys, ie rejection is
certain. The underlying transition graph gets restricted (eg one can refuse to jump off a domain
in the plane).

One can also extend this to non-symmetric α, in which case one needs to reject certainly if
α(y, x) = 0 (meaning β corrects the lack of symmetry by cancelling assymetric jumps).

1meaning for all x, y p(x)P (x, y) = p(y)P (y, x), which implies pP = p the invariance of p
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One can also deal with non irreflexive α, ie α(x, x) > 0 for some x, but when is this useful?

One can use α to localize the moves, optimize the price of computing ∆E, and favour a priori
ys with a lower energy if possible. One can think of α as a heuristics -if say the goal is to sample
from the equilibrium probability.

§a continuous-time version -

We start with the same ingredients, X, α, E except that α is now an arbitrary rate function on
X ×X r ∆X . We define as in the discrete-time case:

q(x, y) = α(x, y)β(x, y)
β(x, y) = min(1, α(y, x)/α(x, y) exp(−(E(y)− E(x)))

hence, supposing wlog α(y, x)/α(x, y) exp(−(E(y)−E(x)) ≤ 1 (equivalently α(x, y)/α(y, x) exp(−(E(x)−
E(y)) ≥ 1)

q(y, x)/q(x, y) = α(y, x)α(x, y)−1α(x, y)/α(y, x) exp(−(E(x)− E(y))
= exp(E(y)− E(x))

so we have detailed balance.

As α in this case is any function, it is always possible to choose α = 1, and everything
simplifies to q(x, y) = min(1, exp(−(E(y)− E(x))).

§a common mistake - go ostinato

Suppose one repeats the αβ protocol without incrementing time. Eg write until(ωi, 0 ≤ wi ≤ 1)
for the obstinate 2-step postselection (as a for loop as it almost surely terminates), where:
- 1) one draws uniformly an i (in a finite non-empty set, say {1, . . . ,m}) and
- 2) accepts ωi with probability wi, or else goto 1 and advance time.

This picks up ωi with probability p(ωi) = wi/
∑
j wj , as this probability p(ωi) satisfies the

recursive relation (supposing |Ω| = m <∞):

p(ωi) = wi/m+ 1/m(
∑
j(1− wj))p(ωi)

Getting to pick ωi will happen after some mean time which one can also compute - this will
increase as wi decreases.

Now, supposing E(x) ≥ E(y) ie w(x, y) = 1:

p(y, x)/p(x, y) = w(y, x)/
∑
y′ w(y, y′) ·∑y′ w(x, y′)/w(x, y)

= exp(E(y)− E(x)) ·∑y′ w(x, y′)/
∑
y′ w(y, y′)

so that - if
∑
y′ w(x, y′) =

∑
y′ w(y, y′) for any two neighbours x, y - E is an equilibrium for

p(x, y) (on the initial component). But there is no reason why this should be true in general
with this assignment! Eg if x is the center of a star and has energy zero, while peripheral nodes
have energy 1, then this is saying that d(x) = 1/e which is absurd - perhaps in the limit where
many neighbours have lower energy, therefore contributing a 1, the equation is approximately
satisfied?
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§an example - to understand the difference between the two versions

Suppose X is finite and the transition graph underlying α is a star-shaped graph with a hub x0,
and n branches; suppose E = 0 everywhere.

Let us consider first the discrete case with α(x) the uniform probability. Then p(x0, y) =
1/n · 1 = 1/n, p(y, x0) = 1 · 1/n = 1/n < 1, p(y, y) = 1− 1/n. One stays put a lot in a peripheric
node. The limit is the uniform probability by construction (as E = 0 means uniform), modulo
the problem of periodicity. We see also that it is not always possible to pick α(x, y) = α(y, x)
when the transition graph does not have constant outdegree. If we were to go obstinato (see
above), then the limit probability would be 1/2 at x0 and 1/2n elsewhere; not converging to the
intended uniform probability.

Consider now the ctMC case, with α = 1. Then q(x0, y) = 1 = q(y, x0), again this converges
by construction to the uniform probability. But now there are no rejections, it is just that the
process stays naturally longer on a peripheric point where the frequency is 1, than at the hub
where it is n.

4 return to model

§Description of the Metropolis hybrid simulation -

First, as we have noticed already we can give a self-consistent description of the projected MC
on Lx, n:

Lx, n→γLx Lx + 1, n
Lx, n→k(LxLy−n) Lx, n+ 1

Rates are indicated on top of the transition. This is a pure ctMC which we can run and will
describe self-consistently the evolution of the population and grid size.

Now to run our simulation, we must be able to mix a discrete-time MC as given by the
Metropolis part of the algorithm, and the continuous-time dynamics of growth and insertions
(which have just written in the projected space).

One solution, in this particular case, is to exploit the above ctMC. This will give the (random)
times at which the grid should grow (and then we pick up uniformly the place of insertion of a
new column), and receptors should be inserted (again we pick the position of insertion uniformly,
although they will incur different ∆Es as we have seen earlier).

Here is another, and completely generic method to do this.

§hybrid dt/ctMC structures -

Suppose we are given at each state σ a partition E(σ) = Ec(σ) + Ed(σ) of all events which are
possible at σ (the event horizon).

Given a double dt/ctMC structure on the same state space, and τ a fixed time increment
(per discrete step), we can define a hybrid dt/ctMC protocol, one step of which is as follows.

Starting in state σ:
- draw all continous random times, t(e), e ∈ Ec(σ)
- pick the smallest t(e0) := infe∈Ec t(e)
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- if t(e0) < τ execute e0 (a CTMC step) with result in a new state σ′ and a time increment δt
- else execute a discrete step on Ed(σ) which results in a new state σ′ and a time increment τ

§simulation -

We can apply our general scheme. Each state of the system σ has a partition as above: the
continuous events are growths and insertions, the discrete ones are diffusions/bindings; we pick
τ = 1 which means the reference time unit is a MC step. Or we can opt for the ctMC version of
Metropolis and just add the transitions for growths and insertions.

If we return to the simulation output, between time [7.105, 8.105], we see that each column
insertion event had about one opportunity to apply (as γ ∼ 10−5), and as we have about Lx such
events (this is an under approximation), this means that the size should approximately (more
than) double in this time interval. Indeed this is what we see in the result (a ‘typical’ run of the
simulation). This shows that rates k, γ are measured in a time unit which is that of an MC step.

To know what that means in terms of clock time units, we could calibrate by knowing the
doubling time for an eColi.

2

geneous phase, while for J > Jc, the system can phase
separate into regions of high and low density. The con-
formational energy cost increases Jc.

To account for growth of the bacterial cell, we allow
the lattice to expand in the x direction according to
Lx(t) ≈ Lx(0)eγt, where Lx(0) is the initial length of
the bacterium and γ is the growth rate. The expan-
sion of the lattice is implemented by random insertion of
empty columns at a rate γLx(t) with equal probability
anywhere in the lattice. Based on the observation that
newly synthesized chemotaxis receptors are inserted into
the cell membrane uniformly over the entire length of the
cell [12], particles are randomly deposited onto the lattice
at a rate kon per available (i.e. unoccupied) site. This
ultimately leads to an average density of occupied sites
ρo = kon/(γ + kon). To see this, let N(t) and n(t) be
the total number of lattice sites and the number of occu-
pied sites, respectively, at time t, with N(t) = N(0)eγt.
On average, the total rate of particle deposition is given
by dn/dt = kon[N(t) − n(t)]; the general solution to this
equation is given by n(t) = ρoN(t) + Ce−kont, where
ρo = kon/(γ+kon) is the asymptotic value of the particle
number density, defined by ρ(t) ≡ n(t)/N(t), and C is a
constant. We start our simulations with ρ(t = 0) = ρo so
that, on average, ρ(t) remains fixed at ρo.

For our simulations, the cell circumference was fixed
at Ly = 50, with α = 0.5 and interaction strength
J = 4, considerably greater than the critical strength
Jc. The system was initialized with a cluster at each end
of the cell to mimic the existing clusters at the poles.
At the start of each simulation, the length of the cell is
Lx(0) = 20 and, as the cell grows, newly inserted par-
ticles aggregate to form clusters that grow with time.
Fig. 2 illustrates a series of snapshots from a representa-
tive run with the growth rate chosen to be γ = 0.8×10−5,
and a deposition rate kon = 2 × 10−6, yielding ρo = 0.2.
Notice that clusters of particles spontaneously appear
at positions approximately periodically spaced along the
cell.

The emergence of a self-organized periodicity of clus-
ters can be understood by noting the positions of new
clusters when they first appear. At the start of the sim-
ulation the clusters at each end of the cell act as sinks
for newly inserted particles. As the cell grows and these
two clusters move apart, a new cluster forms roughly at
the midpoint of the cell. As cell growth continues, newly
inserted particles spontaneously aggregate to form new
clusters in between existing clusters; the location of a
newly formed cluster is preferentially at the middle of
two existing clusters, resulting in periodically positioned
clusters (Fig. 2). If the separation between two existing
clusters is below a characteristic length �c, diffusion dom-
inates and particles are absorbed by old clusters; if the
separation is larger than �c, particles nucleate to form a
new cluster, leading to periodic spacing ∼ �c.

To quantify the separation between clusters, we ob-
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FIG. 1: Schematic of the lattice model. Particles hop at
random between neighboring lattice points and can join or
leave an existing cluster from the boundary of the cluster.
Columns of lattice points are inserted at random to mimic
cell growth, and particles are inserted at random to mimic
protein insertion in the membrane.

FIG. 2: Snapshots of the model cell membrane at times 70,
75, 80, 85, and 90 ×104 Monte Carlo time-steps as defined
in the text. The total size of the system in the final snap-
shot is 1350 columns by 50 rows, with ≈ 20% of lattice sites
occupied by protein particles (green). In the inset we show
a representative image of protein receptor clusters in E. coli
from Victor Sourjik’s lab (courtesy: Victor Sourjik)

tained the distribution of the separations between neigh-
boring clusters for systems grown to Lx = 1900 (see
Fig. 3). Due to stochastic fluctuations, a cluster is not
thermodynamically stable until it reaches a critical size.
We found that clusters of size ≥ 50 were stable and did
not disappear; we thus used size 50 as a criterion to iden-
tify a cluster. The separation between neighboring clus-
ters is defined to be the distance between the centers of
mass of the two clusters. For Lx = 1900, there are on
average eight clusters present in the system. The dis-
tribution of separations exhibits a single maximum at
∆x ≈ 230, indicating a preferred separation between
neighboring clusters. Moreover, the fraction of cluster
separations less than half the peak value is only 7.6%,
indicating a strong suppression of close (i.e. ∆x < 115)
clusters. For comparison, the distribution of inter-cluster
separation would be an exponential if the cluster centers
were positioned randomly (dotted line in Fig. 3).

To investigate the mechanism responsible for cluster
positioning, we studied how the position of a newly
formed cluster depends on the positions of existing clus-
ters. For simplicity, we used periodic boundary condi-
tions in the x direction and initialized simulations with
Lx(0) = 1, that is, with only one column of sites in the
system. We used α = 0.5, J = 4.0, kon = 1.1×10−6, and
γ = 10−5, yielding ρ0 ≈ 0.1. As the system grows, the de-

Figure 2: One Metropolis simulation of the model of spatial clustering. MC steps are in multiple
of 104.

§What if we do not want to do Metropolis? - Rule-based version

We have seen Kappa last session; we also have an extension Spatial Kappa (due to Donal Stewart,
used in our last 2 award-winning IGEM projects). As the state space Lx(t)×Ly → {0, 1} grows
with time, we would have to adapt this, extend it further. Another problem is to accomodate
exclusivity, that is to say the fact that any location in the grid can be populated by at most one
object (whereas there is no such restriction in Spatial Kappa at the moment). So let’s keep with
Kappa for now.

In principle it is easy. We just turn each case of the ∆E analysis into its own rule and have to
ensure that the rate ratio ρ(x, y) is the correct value, that is exp(∆E); convergence to the correct
invariant measure is guaranteed as long as one stays in the reversible subset of rules; dynamics
is different though (more realistic).

Exercise: Do it. Reproduce the growthless model in Kappa. Hint: 1) describe the grid itself
as a Kappa object; 2) chose rates so that the energy deltas are consistent, which means rule have
to be able to tell the ∆E (which means they have to incorporate enough to compute the freeness
of any node involved, see the calculation made earlier).
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How would you model growth?

Here is a question for us to ponder later. How is the Metropolis dynamics close to a rule-based
one? Can we pick up rule rates such that they coincide (in the absence of binary rules perhaps?).

§non-ambiguous ernergy balance - using multisets of sites

Modeling the grid in Kappa using multisets of sites, where left, right, up, down are indistinguished
would increase the symmetry hence decrease the number of rules to write; for diffusion for instance
the above would be enough. There is a tool compiling this to normal Kappa.

Consider the following energy shapes (using multisets of sites to lighten the notation):
- bond: (o1, a

1), (o1, a
1) with price −J

- free agents, that is to say all “stars” with at least one occupied neighbouring site:

(o1, a
1, a2, a3, a4), (o1, a

1), (o1, a
2), (o1, a

3), (o1, a
4)/4! +

(o1, a
1, a2, a3, a4), (o1, a

1), (o1, a
2), (o1, a

3), (o0, a
4)/3! +

(o1, a
1, a2, a3, a4), (o1, a

1), (o1, a
2), (o0, a

3), (o0, a
4)/2!2 +

(o1, a
1, a2, a3, a4), (o1, a

1), (o0, a
2), (o0, a

3), (o0, a
4)/3!

each with price αJ . Note the symmetry discounts (as we count shape embeddings).

We could also count free stars (o1, a
1, a2, a3, a4), (o0, a

1), (o0, a
2), (o0, a

3), (o0, a
4)/4! and sub-

tract this to (o1) = n.

If we know the value of these observables, then we know the energy of the system.

Hence, the formal constraint that rules must fullfil to have a non-ambiguous energy balance
is that every variation of the energy shape counts incurred by applying the rule should be
computable from the rule itself. The rule has to provide enough context to compute its ∆E.

Else, we have to discover its rate per each event at run-time, and it will depend on the event.
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