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geneous phase, while for J > Jc, the system can phase

separate into regions of high and low density. The con-

formational energy cost increases Jc.

To account for growth of the bacterial cell, we allow

the lattice to expand in the x direction according to

Lx(t) ≈ Lx(0)eγt, where Lx(0) is the initial length of

the bacterium and γ is the growth rate. The expan-

sion of the lattice is implemented by random insertion of

empty columns at a rate γLx(t) with equal probability

anywhere in the lattice. Based on the observation that

newly synthesized chemotaxis receptors are inserted into

the cell membrane uniformly over the entire length of the

cell [12], particles are randomly deposited onto the lattice

at a rate kon per available (i.e. unoccupied) site. This

ultimately leads to an average density of occupied sites

ρo = kon/(γ + kon). To see this, let N(t) and n(t) be

the total number of lattice sites and the number of occu-

pied sites, respectively, at time t, with N(t) = N(0)eγt.

On average, the total rate of particle deposition is given

by dn/dt = kon[N(t)− n(t)]; the general solution to this

equation is given by n(t) = ρoN(t) + Ce−kont, where

ρo = kon/(γ +kon) is the asymptotic value of the particle

number density, defined by ρ(t) ≡ n(t)/N(t), and C is a

constant. We start our simulations with ρ(t = 0) = ρo so

that, on average, ρ(t) remains fixed at ρo.

For our simulations, the cell circumference was fixed

at Ly = 50, with α = 0.5 and interaction strength

J = 4, considerably greater than the critical strength

Jc. The system was initialized with a cluster at each end

of the cell to mimic the existing clusters at the poles.

At the start of each simulation, the length of the cell is

Lx(0) = 20 and, as the cell grows, newly inserted par-

ticles aggregate to form clusters that grow with time.

Fig. 2 illustrates a series of snapshots from a representa-

tive run with the growth rate chosen to be γ = 0.8×10−5,

and a deposition rate kon = 2× 10−6, yielding ρo = 0.2.

Notice that clusters of particles spontaneously appear

at positions approximately periodically spaced along the

cell.

The emergence of a self-organized periodicity of clus-

ters can be understood by noting the positions of new

clusters when they first appear. At the start of the sim-

ulation the clusters at each end of the cell act as sinks

for newly inserted particles. As the cell grows and these

two clusters move apart, a new cluster forms roughly at

the midpoint of the cell. As cell growth continues, newly

inserted particles spontaneously aggregate to form new

clusters in between existing clusters; the location of a

newly formed cluster is preferentially at the middle of

two existing clusters, resulting in periodically positioned

clusters (Fig. 2). If the separation between two existing

clusters is below a characteristic length �c, diffusion dom-

inates and particles are absorbed by old clusters; if the

separation is larger than �c, particles nucleate to form a

new cluster, leading to periodic spacing ∼ �c.

To quantify the separation between clusters, we ob-
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FIG. 1: Schematic of the lattice model. Particles hop at
random between neighboring lattice points and can join or
leave an existing cluster from the boundary of the cluster.
Columns of lattice points are inserted at random to mimic
cell growth, and particles are inserted at random to mimic
protein insertion in the membrane.

FIG. 2: Snapshots of the model cell membrane at times 70,
75, 80, 85, and 90 ×104 Monte Carlo time-steps as defined
in the text. The total size of the system in the final snap-
shot is 1350 columns by 50 rows, with ≈ 20% of lattice sites
occupied by protein particles (green). In the inset we show
a representative image of protein receptor clusters in E. coli
from Victor Sourjik’s lab (courtesy: Victor Sourjik)

tained the distribution of the separations between neigh-

boring clusters for systems grown to Lx = 1900 (see

Fig. 3). Due to stochastic fluctuations, a cluster is not

thermodynamically stable until it reaches a critical size.

We found that clusters of size ≥ 50 were stable and did

not disappear; we thus used size 50 as a criterion to iden-

tify a cluster. The separation between neighboring clus-

ters is defined to be the distance between the centers of

mass of the two clusters. For Lx = 1900, there are on

average eight clusters present in the system. The dis-

tribution of separations exhibits a single maximum at

∆x ≈ 230, indicating a preferred separation between

neighboring clusters. Moreover, the fraction of cluster

separations less than half the peak value is only 7.6%,

indicating a strong suppression of close (i.e. ∆x < 115)

clusters. For comparison, the distribution of inter-cluster

separation would be an exponential if the cluster centers

were positioned randomly (dotted line in Fig. 3).

To investigate the mechanism responsible for cluster

positioning, we studied how the position of a newly

formed cluster depends on the positions of existing clus-

ters. For simplicity, we used periodic boundary condi-

tions in the x direction and initialized simulations with

Lx(0) = 1, that is, with only one column of sites in the

system. We used α = 0.5, J = 4.0, kon = 1.1×10−6, and

γ = 10−5, yielding ρ0 ≈ 0.1. As the system grows, the de-
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geneous phase, while for J > Jc, the system can phase

separate into regions of high and low density. The con-

formational energy cost increases Jc.

To account for growth of the bacterial cell, we allow

the lattice to expand in the x direction according to

Lx(t) ≈ Lx(0)eγt, where Lx(0) is the initial length of

the bacterium and γ is the growth rate. The expan-

sion of the lattice is implemented by random insertion of

empty columns at a rate γLx(t) with equal probability

anywhere in the lattice. Based on the observation that

newly synthesized chemotaxis receptors are inserted into

the cell membrane uniformly over the entire length of the

cell [12], particles are randomly deposited onto the lattice

at a rate kon per available (i.e. unoccupied) site. This

ultimately leads to an average density of occupied sites

ρo = kon/(γ + kon). To see this, let N(t) and n(t) be

the total number of lattice sites and the number of occu-

pied sites, respectively, at time t, with N(t) = N(0)eγt.

On average, the total rate of particle deposition is given

by dn/dt = kon[N(t)− n(t)]; the general solution to this

equation is given by n(t) = ρoN(t) + Ce−kont, where

ρo = kon/(γ +kon) is the asymptotic value of the particle

number density, defined by ρ(t) ≡ n(t)/N(t), and C is a

constant. We start our simulations with ρ(t = 0) = ρo so

that, on average, ρ(t) remains fixed at ρo.

For our simulations, the cell circumference was fixed

at Ly = 50, with α = 0.5 and interaction strength

J = 4, considerably greater than the critical strength

Jc. The system was initialized with a cluster at each end

of the cell to mimic the existing clusters at the poles.

At the start of each simulation, the length of the cell is

Lx(0) = 20 and, as the cell grows, newly inserted par-

ticles aggregate to form clusters that grow with time.

Fig. 2 illustrates a series of snapshots from a representa-

tive run with the growth rate chosen to be γ = 0.8×10−5,

and a deposition rate kon = 2× 10−6, yielding ρo = 0.2.

Notice that clusters of particles spontaneously appear

at positions approximately periodically spaced along the

cell.

The emergence of a self-organized periodicity of clus-

ters can be understood by noting the positions of new

clusters when they first appear. At the start of the sim-

ulation the clusters at each end of the cell act as sinks

for newly inserted particles. As the cell grows and these

two clusters move apart, a new cluster forms roughly at

the midpoint of the cell. As cell growth continues, newly

inserted particles spontaneously aggregate to form new

clusters in between existing clusters; the location of a

newly formed cluster is preferentially at the middle of

two existing clusters, resulting in periodically positioned

clusters (Fig. 2). If the separation between two existing

clusters is below a characteristic length �c, diffusion dom-

inates and particles are absorbed by old clusters; if the

separation is larger than �c, particles nucleate to form a

new cluster, leading to periodic spacing ∼ �c.

To quantify the separation between clusters, we ob-
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FIG. 1: Schematic of the lattice model. Particles hop at
random between neighboring lattice points and can join or
leave an existing cluster from the boundary of the cluster.
Columns of lattice points are inserted at random to mimic
cell growth, and particles are inserted at random to mimic
protein insertion in the membrane.

FIG. 2: Snapshots of the model cell membrane at times 70,
75, 80, 85, and 90 ×104 Monte Carlo time-steps as defined
in the text. The total size of the system in the final snap-
shot is 1350 columns by 50 rows, with ≈ 20% of lattice sites
occupied by protein particles (green). In the inset we show
a representative image of protein receptor clusters in E. coli
from Victor Sourjik’s lab (courtesy: Victor Sourjik)

tained the distribution of the separations between neigh-

boring clusters for systems grown to Lx = 1900 (see

Fig. 3). Due to stochastic fluctuations, a cluster is not

thermodynamically stable until it reaches a critical size.

We found that clusters of size ≥ 50 were stable and did

not disappear; we thus used size 50 as a criterion to iden-

tify a cluster. The separation between neighboring clus-

ters is defined to be the distance between the centers of

mass of the two clusters. For Lx = 1900, there are on

average eight clusters present in the system. The dis-

tribution of separations exhibits a single maximum at

∆x ≈ 230, indicating a preferred separation between

neighboring clusters. Moreover, the fraction of cluster

separations less than half the peak value is only 7.6%,

indicating a strong suppression of close (i.e. ∆x < 115)

clusters. For comparison, the distribution of inter-cluster

separation would be an exponential if the cluster centers

were positioned randomly (dotted line in Fig. 3).

To investigate the mechanism responsible for cluster

positioning, we studied how the position of a newly

formed cluster depends on the positions of existing clus-

ters. For simplicity, we used periodic boundary condi-

tions in the x direction and initialized simulations with

Lx(0) = 1, that is, with only one column of sites in the

system. We used α = 0.5, J = 4.0, kon = 1.1×10−6, and

γ = 10−5, yielding ρ0 ≈ 0.1. As the system grows, the de-

reasonable parameters reproduce spatial arrangement of chemo-sensors
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FIG. 3: The distribution of inter-cluster separations. Simu-
lations were stopped when the system reached Lx = 1900,
which corresponds to approximately eight clusters in the
system. The density is ρo = 0.1 and the growth rate is
γ = 1×10−5. The data was averaged over 70,000 simulations.
The bin size is 20. If the centers of clusters were randomly
distributed, the distribution of inter-cluster separations would
be exponential as shown by the dotted curve.

posited particles aggregate to form first one cluster and,

later, a second stable cluster. We recorded the position

of the second cluster (once it had reached a size ≥ 50)

with respect to the first. The distribution of the separa-

tions between the new cluster and the existing cluster as

a fraction of the total cell length is plotted in Fig. 4(a).

The distribution peaks at a reduced distance of 0.5, i.e.,
the second cluster is most likely to form at the midpoint,

equidistant from the edges of the existing cluster.

To understand why the second cluster formed near

midcell, we investigated the density profile of particles in

the dilute region between two stable clusters during cell

growth. Simulations were performed, as for Fig. 4(a), us-

ing periodic boundary conditions in x and starting from

a single column. In Fig. 4(b), we plotted the particle

density profile along the x axis as measured when the

system reaches Lx = 300 at an average global particle

density ρo = 0.1. In these simulations, at Lx = 300, typ-

ically there was one stable cluster in the system. Position

was measured from one edge of the cluster and was nor-

malized by the distance between the two flanking edges

of the cluster. The average particle density fits very well

to a quadratic function with the maximum at midcell.

The observed quadratic particle density profile can be

understood as follows. The average local particle density

ρ(r, t) in regions that do not contain clusters satisfies

the diffusion equation ∂ρ/∂t = D∇2ρ + kon, where D is

the particle diffusion coefficient and kon is the particle

insertion rate. Consider a region flanked by two stable

neighboring clusters with flanking edges at x = 0 and

FIG. 4: (a) Distribution of the separation along the x di-
rection between the center of the new (second) cluster and
the center of the old (first) cluster, using periodic bound-
ary conditions in x (see inset). The dotted line is a guide
to the eye. (b) The particle density profile in the x direc-
tion (periodic boundary conds.) with one cluster in the sys-
tem. The particle density was measured when the system
reached Lx = 300 and was averaged over 10,000 simulations.
The distance was normalized by the separation between the
two flanking edges of the cluster as measured in the x direc-
tion. The smooth line is a fit to a parabola. (c) The average
inter-cluster separation versus the particle density ρo at fixed
growth rate γ = 10−5. (d) The average inter-cluster separa-
tion versus growth rate γ at fixed particle density ρo = 0.1.
The smooth curves in (c) and (d) are fits to power laws ρ−0.47

o

and γ−0.53 respectively. (e) The cluster size distribution av-
eraged over 10,000 simulations. Cluster sizes were measured
when the system reached Lx = 1900; the red line is a fit to
the curve y = exp[a1x+a2x ln x+a3 ln x+a4], with a1 ≈ 0.8,
a2 ≈ −0.37, a3 ≈ −7.6, and a4 ≈ −0.9, for cluster size.
(f) Dependence of the standard deviation of cluster separa-
tion (normalized by the average separation) on interaction
strength J . The parameters and the method for collecting
data were the same as in (a). In the inset we show the depen-
dence of inter-cluster separation on J .

x = �. Approximating stable clusters as perfect sinks for

particles gives the boundary conditions ρ(0) = ρ(�) = 0.

Hence, in the membrane strip between two clusters, the

steady-state solution [13] to the diffusion equation is

ρ(x) = −kon

2D

�
x− �

2

�2

+
kon�2

8D
. (2)
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Chemotaxis receptors in E. coli form clusters at the cell poles and also laterally along the cell
body, and this clustering plays an important role in signal transduction. Recently, experiments
using fluorescence imaging have shown that, during cell growth, lateral clusters form at positions
approximately periodically spaced along the cell body. In this paper, we demonstrate within a
lattice model that such spatial organization could arise spontaneously from a stochastic nucleation
mechanism. The same mechanism may explain the recent observation of periodic aggregates of
misfolded proteins in E. coli.

PACS numbers: 87.16.A-, 05.50.+q, 87.15.Vv

Spatial organization of proteins is important in many
cellular processes including growth, division, movement,
and establishment of polarity [1]. Over the past few
years, advances in imaging techniques such as fluores-
cence microscopy have led to an increased appreciation
of the scope and character of protein organization in
cells. For example, in Escherichia coli and other bac-
teria, chemosensory complexes form large clusters con-
taining thousands of receptors [2]. Clustering of these
receptors plays a crucial role in the signal integration
and receptor cooperativity required for chemotaxis [3],
i.e. directed movement in chemical gradients. Recent
work by Thiem et al. [4, 5] demonstrated that clusters
of chemotaxis receptors are approximately periodically
positioned along the cell wall, independent of any known
positioning mechanism such as the Min system [6]. Other
examples of periodically positioned protein clusters have
emerged as well [7, 8]; for example, protein aggregates as-
sociated with cellular aging in bacteria exhibit a regular
distribution along the the cell’s long axis in filamentous
E. coli [8]. The question arises – could such periodic
positioning arise spontaneously or does it require the ex-
istence of an unknown positioning system?

Here we demonstrate, within the context of a minimal
lattice model, that protein clustering and periodic po-
sitioning of clusters can emerge spontaneously in grow-
ing cells. Lattice models have been used before to study
clustering of membrane proteins with short-range inter-
actions [9]. In our model, existing clusters act as sinks
for proteins newly inserted in the membrane, locally re-
ducing the density of protomers and thus preventing nu-
cleation of new clusters. As cells grow, existing clus-
ters separate, ultimately allowing new clusters to nucle-
ate at a characteristic spatial separation set by insertion,
diffusion, interaction strength, and growth rates. The
proposed mechanism is quite general; while we focus on
membrane proteins, the mechanism also applies to ag-
gregation of cytoplasmic proteins in the body of the cell
(e.g. misfolded protein aggregates) [8].

In our model, the cell membrane is represented by a

square lattice, whose x-axis coincides with the long axis
of the cell (see Fig. 1). We employ periodic boundary
conditions in the y direction to account for the cylindri-
cal shape of bacteria like E. coli. The protomers (inde-
pendently diffusing protein units) associated with the cell
membrane [10] are treated as particles which can perform
random walks on the lattice. Each lattice site is therefore
associated with a variable σi, either occupied, σi = 1, or
empty, σi = 0. We assume a nearest-neighbor attractive
interaction between particles with interaction energy J ,
measured in units of the thermal energy kBT . To control
the nucleation barrier, we also include a conformational
energy cost given by αJ for each particle with any neigh-
bors, which accounts for the loss of internal entropy when
a particle associates with a cluster or a second protomer.
The total energy of the system (in units of kBT ) is

E = −J
�

<i,j>

σiσj + αJnc, (1)

where nc is the total number of particles with one or
more neighbors (i.e., the number of particles that are
in clusters of size two or greater). Experiments indicate
that the lateral receptor clusters are relatively immobile
while individual membrane proteins are typically free to
diffuse [4]. In our lattice model, we therefore consider
only movement of individual particles.

We use a Metropolis Monte Carlo algorithm to simu-
late the system. A randomly selected particle is moved
to one of its unoccupied neighboring sites with an ac-
ceptance probability p = min(1, e−∆E) where ∆E is the
energy change due to the proposed displacement of the
particle. One Monte Carlo time step corresponds to one
attempted move for each particle present.

In the absence of the conformational energy cost
(α = 0), the thermodynamic system described by our
energy function can be mapped to a two-dimensional
Ising model, for which the critical interaction strength
is known to be Jc ≈ 1.763 [11]. When the interaction
strength is low, J < Jc, the system has one stable homo-

ar
X

iv
:0

80
8.

08
88

v1
  [

co
nd

-m
at

.st
at

-m
ec

h]
  6

 A
ug

 2
00

8

simple Ising model 

Metropolis simulation

with entropic penalty, alpha=0.5: “the price of lost freedom”

2

geneous phase, while for J > Jc, the system can phase

separate into regions of high and low density. The con-

formational energy cost increases Jc.

To account for growth of the bacterial cell, we allow

the lattice to expand in the x direction according to

Lx(t) ≈ Lx(0)eγt, where Lx(0) is the initial length of

the bacterium and γ is the growth rate. The expan-

sion of the lattice is implemented by random insertion of

empty columns at a rate γLx(t) with equal probability

anywhere in the lattice. Based on the observation that

newly synthesized chemotaxis receptors are inserted into

the cell membrane uniformly over the entire length of the

cell [12], particles are randomly deposited onto the lattice

at a rate kon per available (i.e. unoccupied) site. This

ultimately leads to an average density of occupied sites

ρo = kon/(γ + kon). To see this, let N(t) and n(t) be

the total number of lattice sites and the number of occu-

pied sites, respectively, at time t, with N(t) = N(0)eγt.

On average, the total rate of particle deposition is given

by dn/dt = kon[N(t)− n(t)]; the general solution to this

equation is given by n(t) = ρoN(t) + Ce−kont, where

ρo = kon/(γ +kon) is the asymptotic value of the particle

number density, defined by ρ(t) ≡ n(t)/N(t), and C is a

constant. We start our simulations with ρ(t = 0) = ρo so

that, on average, ρ(t) remains fixed at ρo.

For our simulations, the cell circumference was fixed

at Ly = 50, with α = 0.5 and interaction strength

J = 4, considerably greater than the critical strength

Jc. The system was initialized with a cluster at each end

of the cell to mimic the existing clusters at the poles.

At the start of each simulation, the length of the cell is

Lx(0) = 20 and, as the cell grows, newly inserted par-

ticles aggregate to form clusters that grow with time.

Fig. 2 illustrates a series of snapshots from a representa-

tive run with the growth rate chosen to be γ = 0.8×10−5,

and a deposition rate kon = 2× 10−6, yielding ρo = 0.2.

Notice that clusters of particles spontaneously appear

at positions approximately periodically spaced along the

cell.

The emergence of a self-organized periodicity of clus-

ters can be understood by noting the positions of new

clusters when they first appear. At the start of the sim-

ulation the clusters at each end of the cell act as sinks

for newly inserted particles. As the cell grows and these

two clusters move apart, a new cluster forms roughly at

the midpoint of the cell. As cell growth continues, newly

inserted particles spontaneously aggregate to form new

clusters in between existing clusters; the location of a

newly formed cluster is preferentially at the middle of

two existing clusters, resulting in periodically positioned

clusters (Fig. 2). If the separation between two existing

clusters is below a characteristic length �c, diffusion dom-

inates and particles are absorbed by old clusters; if the

separation is larger than �c, particles nucleate to form a

new cluster, leading to periodic spacing ∼ �c.

To quantify the separation between clusters, we ob-
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FIG. 1: Schematic of the lattice model. Particles hop at
random between neighboring lattice points and can join or
leave an existing cluster from the boundary of the cluster.
Columns of lattice points are inserted at random to mimic
cell growth, and particles are inserted at random to mimic
protein insertion in the membrane.

FIG. 2: Snapshots of the model cell membrane at times 70,
75, 80, 85, and 90 ×104 Monte Carlo time-steps as defined
in the text. The total size of the system in the final snap-
shot is 1350 columns by 50 rows, with ≈ 20% of lattice sites
occupied by protein particles (green). In the inset we show
a representative image of protein receptor clusters in E. coli
from Victor Sourjik’s lab (courtesy: Victor Sourjik)

tained the distribution of the separations between neigh-

boring clusters for systems grown to Lx = 1900 (see

Fig. 3). Due to stochastic fluctuations, a cluster is not

thermodynamically stable until it reaches a critical size.

We found that clusters of size ≥ 50 were stable and did

not disappear; we thus used size 50 as a criterion to iden-

tify a cluster. The separation between neighboring clus-

ters is defined to be the distance between the centers of

mass of the two clusters. For Lx = 1900, there are on

average eight clusters present in the system. The dis-

tribution of separations exhibits a single maximum at

∆x ≈ 230, indicating a preferred separation between

neighboring clusters. Moreover, the fraction of cluster

separations less than half the peak value is only 7.6%,

indicating a strong suppression of close (i.e. ∆x < 115)

clusters. For comparison, the distribution of inter-cluster

separation would be an exponential if the cluster centers

were positioned randomly (dotted line in Fig. 3).

To investigate the mechanism responsible for cluster

positioning, we studied how the position of a newly

formed cluster depends on the positions of existing clus-

ters. For simplicity, we used periodic boundary condi-

tions in the x direction and initialized simulations with

Lx(0) = 1, that is, with only one column of sites in the

system. We used α = 0.5, J = 4.0, kon = 1.1×10−6, and

γ = 10−5, yielding ρ0 ≈ 0.1. As the system grows, the de-

E(x) only depends on degree distribution [*]
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number density, defined by ρ(t) ≡ n(t)/N(t), and C is a

constant. We start our simulations with ρ(t = 0) = ρo so

that, on average, ρ(t) remains fixed at ρo.
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at Ly = 50, with α = 0.5 and interaction strength

J = 4, considerably greater than the critical strength

Jc. The system was initialized with a cluster at each end

of the cell to mimic the existing clusters at the poles.

At the start of each simulation, the length of the cell is

Lx(0) = 20 and, as the cell grows, newly inserted par-

ticles aggregate to form clusters that grow with time.

Fig. 2 illustrates a series of snapshots from a representa-

tive run with the growth rate chosen to be γ = 0.8×10−5,

and a deposition rate kon = 2× 10−6, yielding ρo = 0.2.

Notice that clusters of particles spontaneously appear

at positions approximately periodically spaced along the

cell.

The emergence of a self-organized periodicity of clus-

ters can be understood by noting the positions of new

clusters when they first appear. At the start of the sim-

ulation the clusters at each end of the cell act as sinks

for newly inserted particles. As the cell grows and these

two clusters move apart, a new cluster forms roughly at

the midpoint of the cell. As cell growth continues, newly

inserted particles spontaneously aggregate to form new

clusters in between existing clusters; the location of a

newly formed cluster is preferentially at the middle of

two existing clusters, resulting in periodically positioned

clusters (Fig. 2). If the separation between two existing

clusters is below a characteristic length �c, diffusion dom-

inates and particles are absorbed by old clusters; if the

separation is larger than �c, particles nucleate to form a

new cluster, leading to periodic spacing ∼ �c.

To quantify the separation between clusters, we ob-
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FIG. 1: Schematic of the lattice model. Particles hop at
random between neighboring lattice points and can join or
leave an existing cluster from the boundary of the cluster.
Columns of lattice points are inserted at random to mimic
cell growth, and particles are inserted at random to mimic
protein insertion in the membrane.

FIG. 2: Snapshots of the model cell membrane at times 70,
75, 80, 85, and 90 ×104 Monte Carlo time-steps as defined
in the text. The total size of the system in the final snap-
shot is 1350 columns by 50 rows, with ≈ 20% of lattice sites
occupied by protein particles (green). In the inset we show
a representative image of protein receptor clusters in E. coli
from Victor Sourjik’s lab (courtesy: Victor Sourjik)

tained the distribution of the separations between neigh-

boring clusters for systems grown to Lx = 1900 (see

Fig. 3). Due to stochastic fluctuations, a cluster is not

thermodynamically stable until it reaches a critical size.

We found that clusters of size ≥ 50 were stable and did

not disappear; we thus used size 50 as a criterion to iden-

tify a cluster. The separation between neighboring clus-

ters is defined to be the distance between the centers of

mass of the two clusters. For Lx = 1900, there are on

average eight clusters present in the system. The dis-

tribution of separations exhibits a single maximum at

∆x ≈ 230, indicating a preferred separation between

neighboring clusters. Moreover, the fraction of cluster

separations less than half the peak value is only 7.6%,

indicating a strong suppression of close (i.e. ∆x < 115)

clusters. For comparison, the distribution of inter-cluster

separation would be an exponential if the cluster centers

were positioned randomly (dotted line in Fig. 3).

To investigate the mechanism responsible for cluster

positioning, we studied how the position of a newly

formed cluster depends on the positions of existing clus-

ters. For simplicity, we used periodic boundary condi-

tions in the x direction and initialized simulations with

Lx(0) = 1, that is, with only one column of sites in the

system. We used α = 0.5, J = 4.0, kon = 1.1×10−6, and

γ = 10−5, yielding ρ0 ≈ 0.1. As the system grows, the de-
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5 The Metropolis-Hastings DTMC structure

We assume:

- an energy function E : X → R on a countable state space X
- an a priori symmetric irreflexive (α(x, x) = 0) Markov kernel α on X

With this data, we can define a dtMC as a process that mostly but not always follows lines of

decreasing energy (gradient-driven). The idea is that α will select a candidate transition which

we then might accept with a certain probability. If energy diminishes along that transition [why
not with a probability that increases as a function of the −∆E??] we take it certainly; if it

increases we take it with a decreasing probability (as we are reluctant to climb up the energy

landscape).

Note that the α kernel defines the transition graph.

Define for α(x, y) > 0 (equivalently α(y, x) > 0):

β(x, y) = min(1, eE(x)α(x, y)−1 · e−E(y)α(y, x)) acceptance prob

p(x, y) = α(x, y)β(x, y) total motion prob

In case of a rejection we stay at x, which completes the definition of the transition function:

p(x, x) = 1−
�

y �=x α(x, y)β(x, y) null event prob

So - supposing wlog β(x, y) ≤ 1 - we do get detailed balance wrt E:

p(y, x)/p(x, y) = α(y, x)/α(x, y) · β(y, x)/β(x, y)
= α(y, x)/α(x, y) · e−E(x)α(x, y) · eE(y)α(y, x)−1

= eE(y) · e−E(x)

Note that this probability equipment preserves the underlying transition graph defined by α -

as β(x, y) is never zero. In particular it is still symmetric. Only the transition probabilities are

altered. Unless x is a local max for E,
�

y �=x p(x, y) < 1, and the remaining mass is converted

into staying put at x.

If α is uniform and the underlying transition graph is regular (with finite and non-zero degree),

then β(x, y) accepts certainly if ∆E := E(y)−E(x) ≤ 0 - or else with probability exp(−∆E) ≤ �.
This case is called Metropolis?

One can extend the above to ∆E = +∞ - then β(x, y) = 0 for infinite ys, ie rejection is certain.

The underlying transition graph gets restricted (eg one can refuse to jump off a domain in the

plane).

One can also extend this to non-symmetric α, in which case one needs to reject certainly if

α(y, x) = 0 (meaning β corrects the lack of symmetry by cancelling assymetric jumps).

One can also deal with non irreflexive α, but this seems idiotic.

One can use α to localize the moves, optimize the price of computing ∆E, and favour a priori y
with lower energy if possible.

A common mistake is to repeat without incrementing time - ie go ostinato. Eg write until(ωi, 0 ≤
wi ≤ 1) for the obstinate 2-step postselection (comme une boucle for en fait plutot puisque ca

termine toujours), where:

7
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A common mistake is to repeat without incrementing time - ie go ostinato. Eg write until(ωi, 0 ≤
wi ≤ 1) for the obstinate 2-step postselection (comme une boucle for en fait plutot puisque ca

termine toujours), where:

- 1) one draws uniformly an i (in a finite non-empty set) and

- 2) accepts ωi with probability wi, or else goto 1 and advance time.

This picks up ωi with probability p(ωi) = wi/
�

j wj , as this probability p(ωi) satisfies the

recursive relation (supposing |Ω| = m < ∞):

p(ωi) = wi/m+ 1/m(
�

j(1− wj))p(ωi)

Getting to pick ωi will happen after some mean time which one can also compute - this will

increase as wi decreases.

Now, supposing E(x) ≥ E(y) ie w(x, y) = 1:

p(y, x)/p(x, y) = w(y, x)/
�

y� w(y, y
�
) ·

�
y� w(x, y

�
)/w(x, y)

= exp(E(y)− E(x)) ·
�

y� w(x, y
�
)/

�
y� w(y, y

�
)

so that - if
�

y� w(x, y
�
) =

�
y� w(y, y

�
) for any two neighbours x, y - E is an equilibrium for

p(x, y) (on the initial component). But there is no reason why this should be true in general

with this assignment! Eg if x is the center of a star and has energy zero, while peripheral nodes

ahev energy 1, then this is saying that d(x) = 1/e which is absurd - perhaps in the limit where

many neighbours have lower energy, therefore contributing a 1, the equation is approximately

satisfied?

5.1 An application

This simple case is used in Hierarchical structure and the prediction of missing links in networks:

configurations are binary trees x on a fixed number of leaves with internal nodes labelled in [0, 1]

- each x defines a hierarchical class of random graph where the probability that 2 nodes/leaves

u, v are connected is the label of u ∨ v; moves are local permutations of nodes in such trees;

E(x) is the − log of the likelihood of a given graph according to the tree-model x. As for general

reasons, the obtained CTMC satisfies detailed balance wrt E, and its transition graph is ergodic

(on the class of all internally labelled binary trees of a certain class), it converges to the invariant

probability ∝ exp(−H(x)). So, as we cruise along the MCMC, we get to sample random graph

models according to their likelihood, that is to say how well they predict the data.

Should we use this in Kappa to accelerate the path to equilibrium - how is this as an approx of

mass action law? is it any more efficient? in energy-based models we could do it explicitly and

naturally - can we continuously time this?

6 Skating on peptides

Vladimir’s lateral diffusion paper, an MC/Metropolis model of membrane-skating +vely charged

peptides on a -vely charged lipid layer. In the model a charged peptide skates rigidly on an

hexagonal lattice of charged lipids - discrete-time MC steps are lipid flips (aka Kawasaki moves

apparently), peptide translations and hexagonal rotations.

8
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1.4 Chemosensor modeling in space

We want to model the spatial distribution of clusters; specifically their seemingly periodic dis-
tribution. We consider a grid model with periodic boundary on the y axis, and the x axis repre-
senting E.Coli’s axis.

§Elementary events in the model - rates

We have events of the following type:
- growth at rate γ, a grid column is duplicated
- insertion of new receptors, at rate k, one receptor is added to a free site on the grid
- diffusion of single receptors, at rate δ, one free receptor diffuses to a nearby free site on the
grid
- binding/unbinding with energy ∂E defined by a coupling term J and an entropy cost for loss
of freedom αJ - eg implemented by a Metropolis algorithm.

Numerics:
- Ly, J,α = 50, 4, 0.5;
- γ, k = 8× 10−6, 2× 10−6

- D = 0.018µm2s−1 which is related to δ by h2δ = D, h = �y/Ly, �y the actual dimension along
y (we could take x as well) approximately �y = 3µm (after Moran et al. SnapShot: key numbers
in biology. Cell (2010) vol. 141 (7) pp. 1262).

NB: the state space Lx(t) × Ly → {0, 1} grows with time; can we extend Spatial Kappa to
do this?

Exercise: Write a Kappa model of this system without growth - how would you model growth?

We define a few simple observables:
- N(t) for the total number of receptors
- n(t) for the total number of free receptors (with no neighbouring receptor)
- ρ(t) = n(t)/N(t) for the receptor ‘density’

By the growth law, the average cell length is (we have exponential growth):

Lx(t) = Lx(0)e
γt (6)

§diffusion - 1D case

x ≥ 0, finite amount of stuff, ∂xn(0+, t) = 0:

n(x, t) ∝ t−1/2e−x2/4Dt (7)

which verifies indeed ∂tn(x, t) = D∂x2n(x, t) as both sides of the equation are equal to :

(e−x2/(4Dt)(x2 − 2Dt))/(4Dt5/2)

(from alpha)

The diffusion length
√
4Dt is the mean distance from origin after t time units, eg if D =

0.018µm2s−1, then after 2.5s, a particle has moved
√
0.18µm � 0.4µm so about 1/5 of EColi’s

length.

6
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1.4 Chemosensor modeling in space

We want to model the spatial distribution of clusters; specifically their seemingly periodic dis-

tribution. We consider a grid model with periodic boundary on the y axis, and the x axis repre-

senting E.Coli’s axis.

§Elementary events in the model - rates

We have events of the following type:

- growth at rate γ, a grid column is duplicated

- insertion of new receptors, at rate k, one receptor is added to a free site on the grid

- diffusion of single receptors, at rate δ, one free receptor diffuses to a nearby free site on the

grid

- binding/unbinding with energy ∂E defined by a coupling term J and an entropy cost for loss

of freedom αJ - eg implemented by a Metropolis algorithm.

Numerics:

- Ly, J,α = 50, 4, 0.5;
- γ, k = 8× 10−6, 2× 10−6

- D = 0.018µm2s−1 which is related to δ by h2δ = D, h = �y/Ly, �y the actual dimension along

y (we could take x as well) approximately �y = 3µm (after Moran et al. SnapShot: key numbers

in biology. Cell (2010) vol. 141 (7) pp. 1262).

NB: the state space Lx(t) × Ly → {0, 1} grows with time; can we extend Spatial Kappa to

do this?

Exercise: Write a Kappa model of this system without growth - how would you model growth?

We define a few simple observables:

- N(t) for the total number of receptors

- n(t) for the total number of free receptors (with no neighbouring receptor)

- ρ(t) = n(t)/N(t) for the receptor ‘density’

§growth and average density -

By the growth law, the average cell length is (we have exponential growth):

Lx(t) = Lx(0)e
γt

(6)

and so the average total number of places (or sites) is:

N(t) = N(0)eγt (7)

On the other hand, still on average:

∂tn(t) = k(N(t)− n(t)) (8)

with solution (C a constant):

n(t) = Ce−kt
+

k

k + γ
N(t) (9)

6

so we can start at invariant density k/(k+gamma)
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§diffusion - 1D case

x ≥ 0, finite amount of stuff, ∂xn(0+, t) = 0:

n(x, t) ∝ t−1/2e−x2/4Dt (10)

which verifies indeed ∂tn(x, t) = D∂x2n(x, t) as both sides of the equation are equal to :

(e−x2/(4Dt)(x2 − 2Dt))/(4Dt5/2)

(from alpha)

The diffusion length
√
4Dt is the mean distance from origin after t time units, eg if D =

0.018µm2s−1, then after 2.5s, a particle has moved
√
0.18µm � 0.4µm so about 1/5 of EColi’s

length.

§diffusion - 1D case with sinks

It is easy to see that the steady state solution to diffusion ∂x2
n(x) = 0 with two sinks (clusters

on each side are considered as sinks) separated by � is:

n(x) = k/2D((x− �/2)2 + (�/2)2) (11)

7
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FIG. 3: The distribution of inter-cluster separations. Simu-
lations were stopped when the system reached Lx = 1900,
which corresponds to approximately eight clusters in the
system. The density is ρo = 0.1 and the growth rate is
γ = 1×10−5. The data was averaged over 70,000 simulations.
The bin size is 20. If the centers of clusters were randomly
distributed, the distribution of inter-cluster separations would
be exponential as shown by the dotted curve.

posited particles aggregate to form first one cluster and,

later, a second stable cluster. We recorded the position

of the second cluster (once it had reached a size ≥ 50)

with respect to the first. The distribution of the separa-

tions between the new cluster and the existing cluster as

a fraction of the total cell length is plotted in Fig. 4(a).

The distribution peaks at a reduced distance of 0.5, i.e.,
the second cluster is most likely to form at the midpoint,

equidistant from the edges of the existing cluster.

To understand why the second cluster formed near

midcell, we investigated the density profile of particles in

the dilute region between two stable clusters during cell

growth. Simulations were performed, as for Fig. 4(a), us-

ing periodic boundary conditions in x and starting from

a single column. In Fig. 4(b), we plotted the particle

density profile along the x axis as measured when the

system reaches Lx = 300 at an average global particle

density ρo = 0.1. In these simulations, at Lx = 300, typ-

ically there was one stable cluster in the system. Position

was measured from one edge of the cluster and was nor-

malized by the distance between the two flanking edges

of the cluster. The average particle density fits very well

to a quadratic function with the maximum at midcell.

The observed quadratic particle density profile can be

understood as follows. The average local particle density

ρ(r, t) in regions that do not contain clusters satisfies

the diffusion equation ∂ρ/∂t = D∇2ρ + kon, where D is

the particle diffusion coefficient and kon is the particle

insertion rate. Consider a region flanked by two stable

neighboring clusters with flanking edges at x = 0 and

FIG. 4: (a) Distribution of the separation along the x di-
rection between the center of the new (second) cluster and
the center of the old (first) cluster, using periodic bound-
ary conditions in x (see inset). The dotted line is a guide
to the eye. (b) The particle density profile in the x direc-
tion (periodic boundary conds.) with one cluster in the sys-
tem. The particle density was measured when the system
reached Lx = 300 and was averaged over 10,000 simulations.
The distance was normalized by the separation between the
two flanking edges of the cluster as measured in the x direc-
tion. The smooth line is a fit to a parabola. (c) The average
inter-cluster separation versus the particle density ρo at fixed
growth rate γ = 10−5. (d) The average inter-cluster separa-
tion versus growth rate γ at fixed particle density ρo = 0.1.
The smooth curves in (c) and (d) are fits to power laws ρ−0.47

o

and γ−0.53 respectively. (e) The cluster size distribution av-
eraged over 10,000 simulations. Cluster sizes were measured
when the system reached Lx = 1900; the red line is a fit to
the curve y = exp[a1x+a2x ln x+a3 ln x+a4], with a1 ≈ 0.8,
a2 ≈ −0.37, a3 ≈ −7.6, and a4 ≈ −0.9, for cluster size.
(f) Dependence of the standard deviation of cluster separa-
tion (normalized by the average separation) on interaction
strength J . The parameters and the method for collecting
data were the same as in (a). In the inset we show the depen-
dence of inter-cluster separation on J .

x = �. Approximating stable clusters as perfect sinks for

particles gives the boundary conditions ρ(0) = ρ(�) = 0.

Hence, in the membrane strip between two clusters, the

steady-state solution [13] to the diffusion equation is
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FIG. 3: The distribution of inter-cluster separations. Simu-
lations were stopped when the system reached Lx = 1900,
which corresponds to approximately eight clusters in the
system. The density is ρo = 0.1 and the growth rate is
γ = 1×10−5. The data was averaged over 70,000 simulations.
The bin size is 20. If the centers of clusters were randomly
distributed, the distribution of inter-cluster separations would
be exponential as shown by the dotted curve.
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inter-cluster separation versus the particle density ρo at fixed
growth rate γ = 10−5. (d) The average inter-cluster separa-
tion versus growth rate γ at fixed particle density ρo = 0.1.
The smooth curves in (c) and (d) are fits to power laws ρ−0.47

o

and γ−0.53 respectively. (e) The cluster size distribution av-
eraged over 10,000 simulations. Cluster sizes were measured
when the system reached Lx = 1900; the red line is a fit to
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