
1 Cellular Potts Model - after Merks et al. Cell-oriented
modeling of in vitro capillary development. Cellular Au-
tomata (2004) p425–434

Another example of this modeling technique applied to morphogenesis see How amoeboids self-
organize.

The state space is a finite square lattice where each lattice site i has an identifier σ(i) ∈ N.
The set σ−1(n) represent the cell n (it better stay connected!). We write A(σ−1(n)) for the lattice
area covered by σ−1(n).

In addition we have a type map τ : N→ T mapping a cell to its type; minimally we need two
types, one for medium M , and one for the cell type of interest say c. Medium is conventionally
mapped to n = 0.

Neighbours with different σs correspond to boundaries separating cells (perhaps of the same
type). We write ∂x for the set of unordered pairs of lattice neighbours (i, i′) with different σ’s in
state x.

§Energy -

We have as parameters:
- a bond energy Jττ ′ for a contact between type τ , τ ′

- a target area Aτ and length lτ for τ 6= M

The energy of a state (or configuration) is defined as a sum of various contributions (some
defined later):

E1(x) =
∑
i,i′∈∂x Jτ(σ(i))τ(σ(i′)) adhesion term

E2(x) = λ
∑

0<n(A(σ−1(n))−Aτ(n))
2 volume term

where λ represent the resistance to compression (note that empty space is ont included in the
constraint).

Typical values: Jcc = 5, JcM = 20, JcB = 100 to prevent adhesion to the boundary B (a
third type).

Observe that the first term will tend to minimize the total boundary length.

§Dynamics -

Pick some site i uniformly at random in ∂x, pick some neighbour i′, copy the state of i to that
of i′ with a certain probability dependent on the energy difference ∆E:

p(i 7→ i′) = e−β(∆E+E0) if ∆E > −E0

= 1 if ∆E ≤ −E0

where β is an inverse temperature, E0 > 0 an energy threshold.

Set β = 1, E0 = 0 and we get a normal (discrete-time) Metropolis-Hastings.

Set β = 0 and all moves are equally likely (infinite temperature), β =∞ and all are forbidden
(zero temperature, frozen world).
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Typically E0 = 0.1.

Time is per MCS (Monte-Carlo step) each of which attempting one update step per site on
average; meaning δt of a microscopic update (whether succesful or not) is 1/|∂x|.

Surface tension: γcM := JcM − Jcc/2. Here we have γcM > 0 which means cells wants to glue
together. (Hint: compute the ∆E1 for glueing:).

§PDE - chemoattractant

The PDE part is discretized on the same lattice (a discrete PDE is a cellular automaton!):

∂tc(i, t) = D∆2c(i) + αδτ(σ(i))c − εc · δσ(i)0

The production term is only for sites of type c, while degradation only happens in the medium.

Time calibration: one does 20 steps per MCS (concretely after each MCS round, one iterates
the PDE 20 times); each step corresponding to a δt of 0.2 - for these parameters the chemoat-
tractant diffuses much more rapidly than the cells, so we ignore advection (due to the cells
moving, usually modelled as ∂tc = −v∂xc). Boundary values are set to zero (boundaries absorb
the chemoattractant).

§chemotaxis -

E3(x) = −χ
∑
i c(i, t)δτ(σ(i))c chemotactic term

The ∆E3 of a swap is thus −χ(c(i′, t) − c(i, t)) so there will be force moving towards higher
concentration; χ measures the strength of this.

In fact they use a slightly different term:

E3(x) = −χ
∑
i

c(i, t)

s · c(i, t) + 1
δτ(σ(i))c chemotactic term with saturation

Typically s = 0.01. For s = 0, this is amounts to the first case, there is no saturation.

§cell elongation -

E4(x) = λL
∑

0<n(l(σ−1(n))− lτ(n))
2 elongation term

where l(X), X a connected subset of the lattice is its length along the main axis.

Think about how E2, E4 can be recomputed after a move. The more incremental the better.
There are problems with cells disconnecting.

§Experiments -

A 500 × 500 lattice, where each lattice site represents an area of about 4µm2. Cells have ac-
tual areas of around 45 lattice sites, equivalent to a typical endothelial cell. Initially dispersed
randomly.

Remains to test the appearance of network like structures for various parameters. One can also
observe the mean size of a medium connected component to capture the network like character
in a number.
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