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In the early days of molecular biology the analogy between electronic-based logic
and transcriptional regulation is already commonplace - there is the celebrated lac-
operon example (a tiny transcriptional circuit used by E. Coli to wake up suitable
enzymes when nutrients change). Today chemists and bioinformaticians have made
sequencing and DNA synthesis cheap - see in Fig. ??).

Figure 1: From The Economist: Hacking goes squishy

This means that there is an opportunity to turn this powerful original metaphor
into an actual engineering discipline. One would design parts (eg promoters, coding
sequences for sensors, reporters and other useful proteins, see below) and assem-
ble them to obtain new logics or rewire/modify old ones. Which parts, logics, and
which modelling methodologies to accompany the design process -in particular how
to characterise parts- this is what this course is about.
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1 Thermodynamic models of transcription

The following is from a review paper on thermodynamics models of gene regula-
tion [?, ?]. The paper looks at a series of elementary cis-regulatory configurations
and develops the associated probability of the RNAp being bounded to the pro-
moter site, from first principles. This is simple but very widely applicable.

The question behind is do TF-based gates and circuits have predictible models?
modulo due calibration etc . . .

1.1 The idea

The idea is that we have a piece of DNA, say D(p, s1, . . . , sn), with a promoter p for
the RNAp to bind and some other sites (operators) s1, . . . , sn for various TFs to
bind (contact map).

We want to find an expression for the promoter activity (or the transcription
rate) as a function of the concentration of the various factors.

Each bond formed in the complex where D sits, including between bindees, pro-
vides a certain additive contribution to the total energy of the D complex. (This
preliminary explanation is simplified in two ways: other refined energies are possi-
ble, eg for DNA loops -more in a later class; and also we are not considering the
background state, ie that of the rest of the system - more in this class).

Write I for the set of such complexes, also called occupancy states of D. Each
i ∈ I has a certain transcriptional activity γi which reflects the various combination
of activators and repressors, and each i also has an energy εi which is the sum of the
energies of its bonds.

Eg γ(D(pRNAp, repR))/γ(D(pRNAp, rep)) � 1 means that the activity is much
smaller when the repressor R is present - which is quantitative way to say that R is
a repressor.

We are going to assume that:
- the system is described by a reversible continuous time Markov chain with equi-
librium distribution pi (see below for a general definition), [which means that the
associated reactions of binding/unbinding are fast compared to the initiation of tran-
scription];
- and the activity of D (roughly the transcription rate) is the mean activity γ :=∑

i piγi.
So that all we have to do to determine the rate of transcription is to compute the

equilibrium distribution pi which is given by the Boltzmann law:

pi/pj = e−β(εi−εj) (1)
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To have a tractable expression for pi and γ, we will make some rather strong
approximations -see below.

But first let us review some of the basics of continuous time Markov chains (on
a finite space).

1.2 CTMC reminder

Suppose a (finite) state space I, and rates qij ≥ 0 to go from j to i, for i 6= j.
This means that the probability that the chain jumps from j to i within dt is by

definition qijdt.
Be careful of the inversion qij = qi←j.
So one can write the (linear) differential equation for p(i) the time-dependent

probability to be in state i at time t:

d/dt p(i) = −(
∑
j 6=i

qji)p(i) +
∑
j 6=i

qijp(j) =
∑
j 6=i

(qijp(j)− qjip(i)) (2)

We write Q for the matrix such that d/dt p = Qp (p is seen as a column vector of
size n× 1).

There is always a unique solution to the steady state equation Qp = 0 (when Q
is strongly connected?), for i ∈ I, it is called the steady state distribution.

Sometimes the stationary probability is an equilibrium meaning for i < j ∈ I:

qijp(j) = qjip(i) (3)

In words Eq. (??) says that at equilibrium the probability to see a jump from j to i
equals that of seeing a jump from i to j. Eq. (??) is also called detailed balance. (By
contrast, at steady state one has a weaker property: the probability to see a jump to
i equals that of seeing a jump to i)

The steady state probability associated to Q is an equilibrium iff:
- [Reversibility] qij = 0⇒ qji = 0,
- [Wegscheider] for every cycle C in the undirected transition graph (defined as
i, j ∈ E iff qij > 0) one has

∏
C qij/qji = 1.

The only if part is easy.
Given a real-valued energy function ε defined on I, and a β ≥ 0, one can define

a unique probability on I such that pε(i)/pε(j) = e−β(εi−εj) (also depends on β).
Equivalently pε(i) = e−βεi/

∑
j e
−βεj [Boltzmann].

Note that e−β(εi−εj) ≥ 1 iff εi ≥ εj that is to say the energy decreases when
jumping from j to i; therefore pε(i) ≥ pε(j) iff εi ≥ εj. Note also that at β = 0
(infinite temperature), pε is the uniform distribution.
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Now pε is the equilibrium of Q iff qij/qji = e−β(εi−εj). This only determines qij/qji,
hence Q, up to a scalar.

In conclusion it is equivalent to say that Q has an equilibrium, and to say that
it has an energy function - in which case the equilibrium is given by the Boltzmann
expression.

1.3 Trivial case (no TFs)

To return to our problem, consider D(p), and suppose one has np (free) copies of
RNAp:
- I = {∅, i}, for i < np the bound RNAp,
- qi∅/q∅i = k+/k− = e−β∆ε, where ∆ε = εb−εf is the energy gained (usually negative)
from binding one RNAp to p, k± are the on- and off-rates for this bond.

So writing pbusy for the probability that any RNAp is bound:

pbusy/pfree = npe
−(p−1)βεf e−βεb/e−pβεf = npe

−β∆ε

pbusy = 1/(1 + 1/(npe
−β∆ε))

One sees that pbusy is an increasing function of np, the more transcriptional machines
are standing by, the more busy is the promoter; also, it is a decreasing function of
∆ε, the less favourable is the binding energetically, the less busy the promoter.

We can do the same computation under a more realistic assumption by introduc-
ing N competing non-specific sites, with bond energy εns -and supposing there are
no free RNAps.

Then I becomes [np;N + 1] where we write [p;n] for the set of injections from p
to n.

One has [p;n] = n!/(n− p)!, and so [p+ 1;n] = [p;n](n− p).
Indeed [0;n] = 1, [1;n] = n, [2;n] = n(n− 1), . . .
The states can be partitioned between the free and busy states as in the first

example:
- free states: energy npεns, number [np;N ]
- busy states: energy npεns + εb− εns, number np[np−1;N ] = np[np;N ]/(N −np+ 1).

So the respective weights (defined up to a scalar) of the free and busy class are:
- [np;N ]e−βnpεns

- np[np;N ]/(N − np + 1)e−βnpεnse−β(εb−εns)

Therefore:

pbusy/pfree = npe
−β(εb−εns)/(N − np + 1) ' (np/N)e−β∆ε

pbusy = 1/(1 + 1/(np

N
e−β∆ε))
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If we compare with the first expression, we see a competitive factor N appearing;
this means that the promoter activity will decrease if competition -ie N - increases.

(TD: compare this computation with the one where one applies pre-symmetries
on the state space; do the same thing for a general model where RNAps can be free
and bound to non specific sites.)

We wish to derive more general expressions of the form

pbusy = 1/(1 + 1/(F np

N
e−β∆ε))

where F is the regulation factor, F > 1 if the cis-regulation is globally favourable to
transcription.

1.4 Derivation for a simple case

Let us see if we can derive similar expressions for the case of an activator.
Consider a D(a, p) where:

- [activator] CRP binds a with energy −∆εa, has nc copies,
- [RNA polymerase] RNAp binds p with energy −∆εr, has nr copies,
- [cooperation] and an additional CRP , RNAp cooperation term εar,
- [background] N non specific binding sites with energy ε.

Set
(
N
n,m

)
:=
(

N
n+m

)(
n+m
n

)
the number of unordered pairs of disjoint subsets of

respective size n, and m in a set of size N (symmetric in n, m). This is the number
of ways in which our CRP s and RNAps can bind to non specific sites.

There are four local occupancy states -supposing that when both CRP andRNAp
are present, they bind instantly.

Their different weights are:
- [empty]

(
N

nc,nr

)
e−β(nc+nr)ε

- [CRP]
(

N
nc−1,nr

)
e−β(nc+nr)εe−β∆εa

- [RNAp]
(

N
nc,nr−1

)
e−β(nc+nr)εe−β∆εr

- [both]
(

N
nc−1,nr−1

)
e−β(nc+nr)εe−β(∆εa+∆εr+εar)

If N is large,
(

N
n,m−1

)
/
(
N
n,m

)
= m/(N −n−m+ 1) ' m/N . Similarly

(
N
x−1

)
/
(
N
x

)
'

x/N .
So for large Ns, the above can be simplified (and normalised by the free weight):

- [empty] 1
- [CRP] nc

N
e−β∆εa

- [RNAp] nr

N
e−β∆εr

- [both] nc

N
nr

N
e−β(∆εa+∆εr+εar)
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Now the probability that RNAp is bound is:

nr

N
e−β∆εr(1 + nc

N
e−β(∆εa+εar))

1 + nc

N
e−β∆εa + nr

N
e−β∆εr + nc

N
nr

N
e−β(∆εa+∆εr+εar)

1.5 Parenthesis on reaction classes

The situation will be the same when one goes from reactions to rules. Suppose ε(x)
is defined as the number of edges in x, where x is a site graph (perhaps ε is weighted
per type of edge). This coarse energy is compatible with any association/dissociation
pair.

Now consider r1 which dissociates A(c, b1), B(a1, c) with eq dissociation constant
K1, and r2 which dissociates the same edge in a different contextA(c2, b1), B(a1, c3), C(a2, b3)
with K2. The energy difference ε(ri · x) − ε(x) = ε(a, b) is the same for both rules,
hence one must have K1 = K2 for pε to be the equilibrium of the rule set r1, r2.
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2 Rule-based modeling of standard biological parts

Two early papers proved the synbio concept: reversible switch, oscillator (Nature
2000).

However, people felt the need for standard parts, well described; with generic
conventions to concatenate sequences; iGEM competition and Bio-Bricks was born
(2001?).

Today, we see that biological parts resist modularity in many ways. Sometimes
there are endogenous interferences between various devices. Eg pairs of transcrip-
tional regulators and promoters, that individually seems to work perfectly, might
interact in unwanted ways when put together. The USTC entry in the iGEM’07
competition tried to address this problem by designing non interfering transcrip-
tional wires. Sometimes there are exogenous problems, eg the host will recognise
elements of the construct and degrade them - in BioBricks speech the host is not
always a benevolent chassis.

This situation where parts refuse to be modular (familiar from the field of evolv-
able hardware [?]) clearly stands in the way of the rational engineering of biological
systems. One of the fundamental challenges to synthetic biology is to engineer simple
parts with a well-understood and well-described behaviour in relation to other parts
-a description which constitutes the part data sheet [?,?]. This means one needs high-
resolution measurement protocols in controlled environments and associated model
calibration methods. But one also needs -and this point often receives less attention-
a modeling language for the formalisation of the interactions that the data sheet is
attempting to furnish parameters for in the first place.

We propose to use rule-based modeling [?,?,?,?,?] to do exactly that. That is
to say we propose that a data sheet should be interpreted -with a resolution that
can be tuned depending on the particulars- as a set of rules describing the ways in
which the part interacts with other parts present in the design, as well as with the
services offered by the host (possibly a cell-free environement). This way one makes
completely clear what the part is supposed to be doing.

Fig1 illustrates this concept with the familiar example of the transcription of a
ribosome binding site coding sequence. We choose to represent DNA parts by agents
with:
- two lateral sites to bind other DNA parts upstream and downstream,
- one to hold the type of the agent (materialised here by its reference number in the
BioBrick registry)
- and one to bind proteins interacting with the agent (typically transcription factors
and the RNA polymerase).
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The transformation depicted in Fig1 is called a rule, or sometimes also a reaction
class [?], and not a reaction because not all sites are shown. This rule expresses the
fact that to a good approximation (as endorsed by the BioBricks foundation), the
RNA polymerase does not care what lies downstream.

transc!pt train new transc!pt - an RBS

Figure 2: A possible rule-based description of transcription (using the Kappa language).
The RNAp agent representing the RNA polymerase binds a genetic element -BBa0034
(representing a part of the BioBrick registry derived from Elowitz’ repressilator)- and can
therefore transcribe it (see the new transcript in the right hand side of the rule).

Fig2 presents another example which illustrates the flexibility afforded by rules.
This particular rule expresses the fact the RNA polymerase might fall off the DNA
-with a certain likelihood which is to be determined experimentally. This happens
instead of continuing transcription in situations where a polymerase is blocked due to
a protein or another polymerase. Likewise, detailed and realistic rules can be written
for combinatorial promoters [?].

In addition, for a successful modeling approach to mammalian synthetic biology
one needs models of various forms of control among which features prominently
the combinatorial control of mammalian promoters and the epigenetic control of
transcription. The explicit representation of domain to domain binding used in Kappa
-the specific rule-based language used here [?]- meshes well with the representation
of such processes. In fact, rule-based techniques have been used recently to formulate
a simple model of epigenetic information repair which should be a suitable starting
point [?]. There are other means of affecting protein stability and/or activity such
as ubiquitination, sumoylation, etc. the modelling of which needs to be explored in
a similar way.

One key property of rules beyond their concision, ease of use and tuneable grained-
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ness is that they allow a compositional approach. Just as parts can be put together,
their associated rule sets can, and will generate implicitly the dynamical system of
interest. This has been done already in the context of ODE modelling [?]. A re-
lated advantage is that one never needs to enumerate the species that a set of rules
might produce, which can be useful when designing even moderatly combinatorial
circuits. The underlying notion of dynamics is inherently stochastic (a continuous-
time Markov chain) and as such particularly suited to the modeling of the noisy
transcriptional devices one uses in synthetic biology.

tra!c jam?

Figure 3: The RNAp agent (representing the RNA polymerase) might fall off DNA if the
next DNA element downstream is already bound (typically by a repressor or another RNAp
agent). This causes the mRNA to be liberated from the RNAP to be degraded later (see
right hand side) and prevents the buildup of RNAPs on DNA.

One can imagine using rule-based modeling to increase the realism and hence the
yield of modeling during the design cycle of a synthetic biological construct. To do
so one needs to:
- 1) conceive and implement a quick and agile way to map a BioBrick-like design -
including generic bio-sensors, transcriptional parts, and epigenetic ones- to a stochas-
tic model,
- 2) adapt and implement existing numerical strategies to calibrate such models,
- 3) develop and implement scaleable methods for their stochastic simulation,
- 4) conceive and implement an open access on-line registry of such virtual parts for
everyone to use, remodel and calibrate.
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3 Next classes (tentative)

- methode de Stelling pour les ODE
- model-driven engineering/data-driven modelling de Jim Collins
- Chris French: BioBricks and IGEM concepts
- Alistair Elfick: measurement, characterisation of parts for synthetic biology
- Kim de Mora: how to choose a synthetic biology project with case studies looking

at good/bad igem projects
- Scott Cockroft: chemical aspects of synthetic biology, DNA synthesis
- Jane Calvert: societal discussion topics
- exercise in Kappa a la Ty Thomson: reconstruct the promoter repressed by LacI

and activated by CI
- Elaine Murphy: lecture on refined RBM techniques for bio-bricks modelling
- Lev: MD and computational design of modified receptors (eg)
- Ricardo: artificial mamallian chromosome?
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