
Lehman’s Laws and related background

Perdita Stevens

School of Informatics
University of Edinburgh



Maintenance

Various experts have asserted that most of the cost of software
ownership arise after delivery, i.e. during “maintenance”.

(E.g. > 90%, Erlikh, L. (2000). Leveraging legacy system dollars
for E-business. (IEEE) IT Pro, May/June 2000, 17-23 !)

But software doesn’t wear out?!?!

No, but it gets

I fixed (corrective maintenance),

I adapted to changing needs (adaptive maintenance),

I improved in performance or maintainability (perfective
maintenance)

I improved by fixing bugs before they activate (preventive
maintenance)

[ISO/IEC 14764, following Swanson]



What should we think of this?

Success: tells of flexible systems that needn’t be thrown away?

Failure: tells of systems that aren’t correct or flexible as built?

Whatever... figures like these do tell us that how maintenance is
done is important: doing it better may save money.

(And doing it less may too, of course.)



Lehman’s laws

Manny Lehman, the “Father of Software Evolution”, wrote many
papers from the mid 70s onwards, proposing “Laws of Software
Evolution” for “E-type systems”.

Systems classified into:

I S-type: formally specified and verified; static by definition

I E-type: real-world system



Lehman’s laws (adapted from 2001 talk by MML)

I Continuing
Change

An E-type system must be continually adapted else it
becomes progressively less satisfactory in use

II Increasing
Complexity

As an E-type system is evolved its complexity increases
unless work is done to maintain or reduce it

III Self regulation Global E-type system evolution processes are self-
regulating

IV Conservation of
Organisational
Stability

Average activity rate in an E-type process tends to re-
main constant over system lifetime or segments of that
lifetime

V Conservation of
Familiarity

In general, the average incremental growth (growth rate
trend) of E-type systems tends to decline

VI Continuing
Growth

The functional capability of E-type systems must be con-
tinually enhanced to maintain user satisfaction over sys-
tem lifetime

VII Declining
Quality

Unless rigorously adapted to take into account changes
in the operational environment, the quality of an E-type
system will appear to be declining as it is evolved

VIII Feedback
System

E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems



Criticism of Lehman’s laws

“Laws”?

Based on data?

Contentful?



Terminology

Legacy system

Reverse engineering

Reengineering

Program comprehension

Evolution

Maintenance: corrective, adaptive, perfective (Swanson)



Legacy systems

A system which still has value, but which significantly resists
modification and evolution.

Stereotypically old – but that can mean 5 years.

Problems include:

I architectural degradation

I reliance on unmaintained software or hardware

I loss of expertise

I not designed for evolution.



So what to do?

Basically three options:

I Soldier on

I Reengineer

I Scrap

The attempt to understand the system is an essential part of the
decision process.



A few sources

The Lehman talk I used, Software Evolution: from Observations to
Theory and the position paper Laws of software evolution revisited
are both available from
http://www.doc.ic.ac.uk/~mml/feast2/papers.html

http://www.doc.ic.ac.uk/~mml/feast2/papers.html

