
Mock Exam Solutions 

 

1. a)i) Assume tiger reward is -1 and escape reward is 1. I will also make the assumption that 
the bunny immediately retreats to the initial room after moving to the tiger room and 
immediately leaves after reaching the room with the exit in it. 

 

 

 

 

 

 

ii) If the exit now leads back to the starting state then all actions will now lead back to the 
starting state. 

 

  

 

 

 

 If the tiger now ends the MDP then all actions will lead to the absorbing “Escape” state. 

 

  
 
 
 
 
 
 
 
 
 

The rewards and probabilities aren’t changed by either. 
 
b)i)Model-based 
ii)Reward shaping is us tailoring the reward function based on our knowledge of the task to 
guide our agents towards optimal solutions faster. The problem is that we are introducing 
our own idea of what the optimal solution looks like into the task and so it may lead to 
results that would be suboptimal in the original, unshaped task. 



iii) Behavioural Cloning seeks to find a policy that best describes the policy used in the 
training data. Inverse Reinforcement Learning seeks to find the reward distribution implied 
by the training data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. a)i) The next possible states are “One coin” and “Zero Coins” as the next player will pick up 
one or two of the coins. 
ii) We can play this game multiple times, performing the same action and recording the state 
after the adversary has taken their turn. We can then use the results to estimate the 
transition function. 
iii) Assuming a loss of 1 for a losing the game: 
 
 
 
 
 
 
 
 
 
If our policy is pick up one coin, the maximum possible loss is 1 
If our policy is pick up two coins, the maximum possible loss is 0 
So, the Mimimax policy, that minimises the maximum possible loss, would be to pick up two 
coins. 
 
b)i) V = ws. V is the scalar approximation of the Value of the state. w is a feature weight 
vector. s is the state feature vector. 
 
c)γ = 1 
i) First visit R for A is 1+1=2 and -1. So V for A is (2-1)/2 = 0.5 
ii) Every visit R for A is 1+1=2, 1, and -1. So V for A is (2+1-1)/3 = 0.666… 
iii) B two step return is 1+-1 = 0. A two step return is -1+0 = -1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



3. a)i) Bootstrapping means that it uses pre-existing estimates to create new estimates. 
ii) Dynamic Programming Methods. 
 
b)i) There will now be three states: A room with a tiger to the right and exit to the left s0, a 
room with an exit to the right and a tiger to the left s1, and an absorbing state s2. Our set of 
states is S. Our actions are now listen a0, go left a1 and go right a2.  
 
Transitions 

a0 s0 s1 s2 
s0 1 0 0 
s1 0 1 0 
s2 0 0 1 

 
a1 s0 s1 s2 
s0 0.1 0 0.9 
s1 0 0.9 0.1 
s2 0 0 1 

 
a2 s0 s1 s2 
s0 0.9 0 0.1 
s1 0 0.1 0.9 
s2 0 0 1 

 
ii) z represents an observation that the bunny makes. z0 is hearing a tiger in the right-hand 
room. z1 is hearing a tiger in the left-hand room. 
 

𝑝(𝑧଴|𝑠଴) = 0.8 
𝑝(𝑧଴|𝑠ଵ) = 0.2 
𝑝(𝑧ଵ|𝑠଴) = 0.2 
𝑝(𝑧ଵ|𝑠ଵ) = 0.8 

 
iii) Now that we have taken action a0 and observed 𝑧ଵ We can update our posterior belief, b. 
Through the equation: 

𝑏′(𝑠ᇱ) = 𝜂𝑝(𝑧|𝑠ᇱ𝑎) ෍ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑏(𝑠)

௦∈ௌ

 

 
Where 𝜂 is a normalising factor equal to: 

𝜂 =
1

∑ 𝑝(𝑧|𝑠ᇱ𝑎)௦ᇱ∈ௌ ∑ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑏(𝑠)௦∈ௌ
 

 
For this MDP a0 has a probability of 1 to transition to the same state, i.e. when 𝑠 = 𝑠ᇱ then 
𝑝(𝑠ᇱ|𝑠, 𝑎଴) =1. So clearly when  𝑠 ≠ 𝑠ᇱ then 𝑝(𝑠ᇱ|𝑠, 𝑎଴) = 0. Therefore: 
 

෍ 𝑝(𝑠ᇱ|𝑠, 𝑎)𝑏(𝑠)

௦∈ௌ

= 𝑏(𝑠ᇱ) 

  

𝜂 =
1

∑ 𝑝(𝑧|𝑠ᇱ𝑎)𝑏(𝑠ᇱ)௦ᇱ∈ௌ
 



 

𝑏′(𝑠ᇱ) =
𝑝(𝑧|𝑠ᇱ𝑎)𝑏(𝑠ᇱ)

∑ 𝑝(𝑧|𝑠ᇱ𝑎)𝑏(𝑠ᇱ)௦ᇱ∈ௌ
 

 
 So for this question and MDP (ignoring the absorbing state as 𝑝(𝑧|𝑠ଶ𝑎଴)=0): 

𝑏′(𝑠ᇱ) =
𝑝(𝑧ଵ|𝑠ᇱ𝑎଴)𝑏(𝑠ᇱ)

∑ 𝑝(𝑧ଵ|𝑠ᇱ𝑎଴)𝑏(𝑠ᇱ)௦ᇱ∈ௌ
 

 

𝑏′(𝑠ᇱ) =
𝑝(𝑧ଵ|𝑠ᇱ𝑎଴)𝑏(𝑠ᇱ)

𝑝(𝑧ଵ|𝑠଴𝑎଴)𝑏(𝑠଴) + 𝑝(𝑧ଵ|𝑠ଵ𝑎଴)𝑏(𝑠ଵ)
 

 
   𝑝(𝑧ଵ|𝑠଴𝑎଴)𝑏(𝑠଴) + 𝑝(𝑧ଵ|𝑠ଵ𝑎଴)𝑏(𝑠ଵ) = 0.2 × 0.5 +  0.8 × 0.5 = 0.5 
 
 Now we can work out the new posterior belief by going over each possible state: 

𝑏′(𝑠଴) =
𝑝(𝑧ଵ|𝑠଴𝑎଴)𝑏(𝑠଴)

0.5
 

 

𝑏′(𝑠଴) =
0.2 × 0.5

0.5
 

     
𝑏′(𝑠଴) = 0.2 

 

𝑏′(𝑠ଵ) =
𝑝(𝑧ଵ|𝑠ଵ𝑎଴)𝑏(𝑠ଵ)

0.5
 

 

𝑏′(𝑠ଵ) =
0.8 × 0.5

0.5
 

     
𝑏′(𝑠ଵ) = 0.8 

 
 
c)i)Non-episodic tasks have no absorbing states, so will have no final timestep and they will 
always be able to make actions that move to a new state and/or generate a reward. Episodic 
tasks have absorbing states from which every action produces no reward and returns to the 
same state and so will have a final timestep in each episode when an absorbing state is 
reached.  
ii) The discount factor for non-episodic tasks is there to prevent the rewards summing to 
infinity and to give more immediate rewards a greater importance. The discount factor for 
episodic tasks is unnecessary but can be used to give more immediate rewards greater 
importance. 


