
Autonomous Orchard Solutions 

 

The real equation used for the harvest reward was: 

𝑟௛௧ = −2𝑐௔௧ + 𝑐௕௧ + 3𝑐௖௧ ± 1 

 

1. First set up arbitrary weights for harvesting 
𝐰௛଴ = (3 2 1) 
We also choose a learning rate 𝛼 = 0.01 
 Let the feature vector representing state 𝑠௧  be 𝐜௧ which is a vector of concentrations of 
chemicals A, B, and C 

To calculate Q from the feature vector s: 
𝑄௧(𝑠௧ , ℎ𝑎𝑟𝑣𝑠𝑡௧) = 𝐜௧𝐰௛௧  
 
For MC: 
𝑇௧ = 𝑅௧ 

  

We calculate the Q(s,harvest) values for the first sample: 

𝑄(𝑠௧ , ℎ𝑎𝑟𝑣𝑒𝑠𝑡௧) = ൭
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𝑄(𝑠଴, ℎ𝑎𝑟𝑣𝑒𝑠𝑡଴) = 𝐶௔଴𝑤௛௔଴ + 𝐶௕଴𝑤௛௕଴ + 𝐶௖଴𝑤௛௖଴ 
  = 4*3+ 7*2 + 1*1 
  = 27 
 
We now calculate the gradient 
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 ∇𝑄଴ = (𝐶௔଴ 𝐶௕଴ 𝐶௖଴) 
= (4 7 1) 
 
Now we can calculate the new weights: 
𝐰௛ଵ = (3 2 1) + 0.01[3 − 27](4 7 1) 
= (2.04 0.32 0.76) 
 
Repeating for sample 2: 
𝑄(𝑠ଵ, ℎ𝑎𝑟𝑣𝑒𝑠𝑡ଵ) = 10*2.04+6*0.32+0*0.76 
  = 22.32 



𝐰௛ଶ = (2.04 0.32 0.76) + 0.01[−15 − 22.32](10 6 0) 
= (−1.69 −0.72 0.76) 
 
 
 
 
 
Repeating for sample 3: 
𝑄(𝑠ଶ, ℎ𝑎𝑟𝑣𝑒𝑠𝑡ଶ) = 20*-1.69+1*-0.72+15*0.76 
  = -23.12 
𝐰௛ଷ = (−1.69 −0.72 0.76) + 0.01[5 + 23.12](20 1 15) 
= (3.93 −0.44 4.98)  
 
Repeating for sample 4: 
𝑄(𝑠ଷ, ℎ𝑎𝑟𝑣𝑒𝑠𝑡ଷ) = 4*3.93+19*-0.44+3*4.98 
  = 22.3 
𝐰௛ସ = (3.93 −0.44 4.98) + 0.01[21 − 22.3](4 19 3) 
= (3.88 −0.69 4.94)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

2. For TD(0) 
𝑇௧ = 𝑟௧ାଵ + 𝛾𝑄(𝑠௧ାଵ, 𝑎௧ାଵ) 
Where 𝑎௧ାଵ is chosen ε-greedily. For this question we assume it always picks the actions in 
the episode provided. 
We can set 𝛾 = 1 as there is an absorbing state but we could also select a lower value. 
Need initial wait weight values. 
𝐰௪଴ =  𝐰௪ସ = (3 2 1) 
 
 
Day 1: 
Wait 
𝑄(𝑠ସ, 𝑤𝑎𝑖𝑡ସ) =  6*3+7*2+2*1 
  = 34 
We also need to calculate: 
𝑄(𝑠ହ, ℎ𝑎𝑟𝑣𝑒𝑠𝑡ହ) =  3*3.88+8*-0.69+4*4.94 
   = 25.88 
𝐰௪ହ = (3 2 1) + 0.01[−1 + 25.88 − 34](6 7 2) 
= (2.45 1.36 0.82) 
 
Day 2: 
Harvest 
𝑄(𝑠ହ, ℎ𝑎𝑟𝑣𝑒𝑠𝑡ହ) =  25.88 
The state after harvest is an absorbing state so Q is 0. 
𝐰௛଺ = (3.88 −0.69 4.94) + 0.01[19 + 0 − 25.88](3 8 4) 
= (3.67 −1.24 4.6648) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

3. We need to find Q values for each day and choose our actions greedily. 
Using the final weight vectors: 
𝒘௪ = (2.45 1.36 0.82) 
𝒘௛ = (3.67 −1.24 4.6648) 

 

Day 1: 
𝑄(𝑠଺, 𝑤𝑎𝑖𝑡଺)  =  20*2.45+6*1.36+1*0.82 
   = 57.98 
𝑄(𝑠଺, ℎ𝑎𝑟𝑣𝑒𝑠𝑡଺) =  20*3.88+6*-0.69+1*4.94 
   = 78.4 
 
So my episode immediately ends in a harvest. 
For the other days: 
Day 2: 
𝑄(𝑠଻, ℎ𝑎𝑟𝑣𝑒𝑠𝑡଻) =  10*3.88+7*-0.69+2*4.94 
   = 43.85 
Day 3: 
𝑄(𝑠଻, ℎ𝑎𝑟𝑣𝑒𝑠𝑡଻) =  5*3.88+8*-0.69+4*4.94 
   = 33.64 
So the orchard harvested on the highest value of Q(s, harvest) that It would have had in 
those 3 days. 
 
If the orchard had waited on the third day then the closest day to harvesting would have 
been the one with the smallest value of 𝑄(𝑠௧ , 𝑤𝑎𝑖𝑡௧) − 𝑄(𝑠௧ , ℎ𝑎𝑟𝑣𝑒𝑠𝑡௧) 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Increasing the learning rate overall increases the effect each sample has on determining the 
weights. If you set it too high, then the weights will never converge as each small error will 
create too large a change in the weights. If you set the learning rate too low, then the 
weights will take a long time to converge and will be vulnerable to getting stuck in local 
maxima. 

5. For the inverted pendulum problem, a robot is trying to balance a rod on a hinge on top of it. 
As the rod can be at any angle the problem would be better modelled continuously.  For a 
chess AI every possible state of the board can be a state in the model  and so a discrete 
approach would be better. 


