
Reinforcement Learning 2015/2016

Tutorial 3

1. Consider the gambler’s problem (example 4.3 in S+B). Why does the optimal policy for the gambler’s
problem have such a curious form? In particular, for capital of 50 it bets it all on one flip, but for
capital of 51 it does not. Why is this a good policy?

Figure 1: Solution of the Gamblers problem

2. Implement (in Matlab; if you like Lisp, use the program from
http://webdocs.cs.ualberta.ca/~sutton/book/code/gambler.lisp) value iteration for the gambler’s
problem and solve it for p = 0.25 and p = 0.55. In programming, you may find it convenient to
introduce two dummy states corresponding to termination with capital of 0 and 100, giving them the
values of 0 and 1 respectively. Show your results graphically. Comment on the stability of your results
as ε→ 0.

3. The Bellman equation V π(s) =
∑
a

π(s; a)
∑
s′

P ass′ [R
a
ss′ + γV π(s′)]

must hold at each state for the value function V π. Show, numerically in figure below, that this equation
holds for the centre state, valued at +0.7, with respect to its four neighbouring states, valued at +2.3,
+0.4, -0.4, and +0.7.

Figure from Sutton
and Barto, 2nd ed.

4. Suppose that you are restricted to considering only policies that are ε-soft, meaning that the probability
of selecting each action in each state, s, is at least ε

|A(s)| , where A (s) is the set of actions that can be
applied in state s. Describe qualitatively the changes that would be required in each of the steps 3, 2,
1, in that order, of the policy iteration algorithm for V in Fig. 4.3 in the Sutton and Barto book (see
below).

Figure from Sutton and Barto, 2nd ed.

5. The simple Reinforcement Learning algorithms that we have considered so far may serve as methods
for solving small-scale MDP problems, but they find few practical applications unless the underlying
assumptions are relaxed, the relevant concepts are generalised and/or problem-specific adaptations are
taken. S. Singh and John Langford (see umichrl.pbworks.com/w/page/7597585/Myths of Reinforce-
ment Learning, or just search for “Myths of Reinforcement Learning”) have contrasted the standard
form of RL (which we have so far focused on in class) and the state-of-the-art algorithms (which are
designed by specialists and often incorporate domain knowledge) by formulating what they call the
Myths of RL.
Go through the list below and discuss whether the myths could be “busted” by reasonable modifications
of the algorithms that we have covered until now.

(a) RL is TD or perhaps Q-learning
(b) RL is about learning optimal policies
(c) RL is tabula rasa
(d) RL is model-free
(e) RL is table look-up
(f) Large state spaces are hard for RL
(g) RL is slow
(h) Non-Markovianity invalidates standard RL methods
(i) RL does not have (m)any success stories since TD-Gammon1

(j) Value function approximation does not work (and so we should do something else - the favourite
alternative seems to be policy search)

(k) RL does not work well with function approximation2

(l) POMDPs are hard for RL to deal with3

1We will discuss TD-Gammon later, in the context of function approximation for RL, for the moment check wikipedia.
2Function approximation for RL will be an important topic later in the course, the idea being that the value function is

not learned separately for every value separately, but as a parameteric function, such that, if there are fewer parameters than
values the learning process is sped up considerably.

3POMDPs are a generalisation of MDPs, where the state of the system is not generally observable. The idea of the solution
of such problems it to generate an internal state that provides the information for a correct decision. Obviously, the internal
state is an imprecise estimate of the true state of the system, such that learning is certainly harder. Can you think of an
example when this approach relevant?

