
Reinforcement Learning 2014: Tutorial 6 (week from 10. 3. 2014)

These are just a few hints, please do not distribute.

1. Errors in value estimation, errors in policy estimation and "region errors", i.e. has 
the agent arrived (sufficiently often/at all) in the highly rewarded regions. This 
corresponds to the three terms in the definition: Q, pi, and mu. Since they are 
essentially multiplied, there is a chance for a trade-off, at least at sub-optimal 
solutions. The optimum is usually characterised by degenerate distributions (all 
probability mass is concentrated on a single state/action). Degeneracy can mean 
that the parameter dependency is not smooth any more such, i.e. the gradient may 
not be very useful. It is an advantage of the natural gradient that it transforms  
(stretches)  the parameter space such that the gradient is always defined (however, 
degenerated cases may result in disvsion of infinity by infinity which is at least 
practically a problem).

2. Importance sampling was discussed last year, see rl/slides13/rl16.pdf. It can be 
helpful in practice.

3. There is no general answer here, i.e. it has to be tried out. The more important 
problem is: When we define the BFs, we do not yet know where the solutions of the 
RL problem is going to be, i.e. where a high resolution is required. If we have 
learned something then by changing BFs we may lose what we have learned. The 
scales and topology of the system may of course be used, in order to define the 
width and distribution of the BF and their placement. Sometimes the required 
resolution becomes unexpectedly high: If a pendulum is to be balanced by say two 
discrete actions, it is difficult to find the exact sequence of fixed-strength pushes 
from either side such that the pendulum arrives precisely in the center. This 
sequence will be different for slightly different points, which the BFs cannot easily 
resolve. When you are away from the center is is less critical as the one of the two 
pushing action that moves the pendulum in the upwards direction will be required 
also for nearby states.
Non-local basis function may sometimes provide a better generalisation to 
unexplored regions (neural networks often use sigmoids which are non-local BFs). 

4. The complexity may be determined by the effective dimension, but we would need 
to have some pruning or adaptive algorithm to find these, i.e. we are facing a typical 
dimension reduction task. Again: RL is different from other approaches in machine 
learning as we don't know the data in advance and the data distribtuion will be 
different for different stages of the RL process. Evolutionary approaches may help 
to find better solutions (essentially implying a many restarts of the algorithm). The 
more relevant question is that the complexity is mainly due to the complexity of the 
sequence of actions required towards the goal. If these sequences are short or 
spatially or temporally homogeneous, then the problem is easy even if the 
state/action space is relatively large.

5. What is relevant here is known as the credit assignment problem. BFs are not 
necessarily optimal also in this respect. But eligibility traces do not (unlike the look-
up table representation) introduce here additional computations, apart from a small 
factor due to the trace update, but not N-times as much updates.

6. Most realistic problems do require function representations unless you can work on 



directly on the data (e.g. the REINFORCE algorithms) or if there are e.g. few 
discrete actions only. What about learning to play chess? What about hybrid 
representations, where you learn first in the approximation and but later also in the 
native discretisation of the problem? 

7. Solution is to have 50/50 left-right in the two grey fields in inside-pointers in the 
fields next to the skulls, and obviously a south pointer in the center. So the path can 
be long but has finite average. The deterministic scheme gets stuck in a portion of 
all cases. This is a very interesting example, as it shows that stochastic policies can 
indeed be better than deterministic ones.

8. phi(x)-psi'(theta), i.e. BF - first moment

9. This was mentioned this in the lecture (just on the whiteboard, therefore is repeated 
here). The matrix can be decomposed in eigenvectors, which all have positive 
eigenvalues. Therefore the gradient is still on the correct side of the level line of the 
function, at least if the learning rate 
is very small.

10.  Here is the result for the stochastic 
problem from that paper (see 
arxive.org).
Although the problem is 
counterintuitive w.r.t. the general 
idea of natural gradients, it is still 
impressive that the decoupling of 
the dimensions and the overall 
more smooth gradient field 
improves learning in the stochastic 
case which is mainly by avoiding 
the oscillations between the regions of different (standard) gradient directions. Note 
that the improvement can be much larger in more typical from, but even here it 
seems to work.

Consider also this (less impressive but more appropriate) example how natural 
gradient works (from Jan Peters' Scholarpedia article on policy gradient.)

Note that the last few problems are not meant as "typical exam questions" but to help a bit 
e.g. with the understanding of the nAC.


