
Reinforcement Learning: Tutorial 4 
Problems and hints for solutions for the week from 23. 2. 2015

1. Is  the reinforcement learning framework adequate to usefully represent all  goal-
directed learning tasks? Can you think of any clear exceptions?                

This problem is from Sutton & Barto's book There is an official set of solutions for 
these problems. I don't know whether my suggestions below are in agreement with 
these solutions. In principle, every problem with a goal is an RL problem (goal: r=1, 
non-goal: r=0), but some remarks are in order:                                               
(1)  The goal must be a state of the problem (or perhaps a state-action pair or a 
state-state transition due to an action). If the goal is not part of the state space other 
methods are required. E.g. "leave the room" defines a clear goal, which would not 
be part of the state-space if the states are positions inside the room.
(3) Goals can be on top of an existing RL problem, notable example is the goal 
"Explore properly" while doing RL. This could be represented as meta-RL problem 
where reward is given for exploratory actions in the primal RL task, but although 
such an approach is theoretically possible, it may not always be efficient. Note that 
there is the possibility to incorporate "exploration bonusses" in the reward function 
of the primal problem.
(4) Goals can consist in changes of the representation (e.g. "to learn maths").
(5) If the problem is relatively large and no further information is given, population-
based methods might be better, i.e. genetic algorithms and related meta-heuristic 
search methods, in particular if the representation of the problem is also subject to  
search, these methods may help.
(6)  Is  it  useful?  If  an exact  model  exist,  i.e.  if  the problem is  deterministic  and 
explicitly known, RL might be too general an approach.

2. The Figure shows the 
approximate  state-
value  functions  for 
the  blackjack  policy 
that sticks only on 20 
or  21,  computed  by 
Monte  Carlo  policy 
evaluation.   Why 
does  the  estimated 
value  function  jump 
up  for  the  last  two 
rows  in  the  rear? 
Why does it  drop off 
for the whole last row 
on the left? Why are 
the front-most values 
higher  in  the  upper 
diagrams  than  in  the  lower?     

If the policy sticks ("stands")  already earlier (I'm not an expert on blackjack, there 
are many variants of the game, feel free to discuss), the transition along the player 
axis would be more gradual. Since the policy sticks at 20 or 21 one, there is no 



chance of "getting bust", i.e. getting immediate negative reward. If the total value is 
below 12, then no new card can lead to busting, therefore this is not considered 
here.  An ace is good to have,  as it can be 1 or 11 points, i.e. leaving an option, 
therefore the value is higher. However, it introduces also more uncertainty (which is 
later averaged out). Note that good players used to remember all cards in the deck 
and could thus profit of the slight non-Markovianity of the game (see also shuffle 
tracking).

3. Reinforcement  learning  systems  do  not  need  to  be  “taught”  by  knowledgeable 
“teachers”; they learn from their own experience. But teachers of various types can 
still  be helpful.  Describe three different  ways in  which a teacher  might  facilitate 
learning.  For  each,  give  a  specific  example  scenario  and  explain  what  makes 
learning more efficient.

(1) Known values: If the goal state is not a stop-state, on can initialise its value with 
r/(1-gamma)
(2) Symmetries (or antisymmetries): when learning a particular state, the symmetric 
state can be learned as well. Approximative symmetries can be used at least in the 
early learning phase (e.g. keep a robot from falling forward is similar but not 
identical to the opposite of preventing it from falling backward)
(3) Neighbourhood relations: Learn to a lesser extend the same for neighbouring 
states; value functions and policies can be smoothed.
(4) in a hierarchical problem, the upper level can be a teacher for the lower level, 
i.e. the student has to complement general rules from the teacher by more detailed 
information from own experience.

4. Consider the game of Tic-Tac-Toe (or any board game with a finite number of 
moves). How do you define the state space and state value function for such a 
game? One could define an afterstate in terms of board positions after the agent 
has made its move. How does this impact on the information required to calculate a 
value function, and what might be the advantage of such a scheme - explain with a 
simple example scenario.

Describe how the task of Jack’s Car Rental (see lecture or Example 4.2 in S&B) 
could be reformulated in terms of afterstates. Why, in terms of this specific task, 
would such a reformulation be likely to speed convergence?

Afterstates can reduce the randomness of the problem, by taking the actual 
reaction of the opponent (or the customer) into account. 

5. Suppose,  a  reinforcement  learning  algorithm  is  trained  for  game  playing  (e.g. 



chess), but  instead of playing against a random opponent,  it  played against itself. 
What do you think would happen in this case? Would it learn a different way of 
playing?

The algorithm might learn to produce (and defend against) some policies only and 
could thus become defenceless against certain types of attacks. Exploration is an 
important issue here. Discuss in this context: intra-species evolution (which brings 
about  beautiful  birds)  and  Nash  equilibria.                 

6. Dynamic programming is said to be “model-based”. What does “model” mean in this 
context? Give an example of a “model-free” reinforcement learning method, 
explaining in what sense it is “model-free”.

Discuss first, why models can help RL, even if DP approaches are not easily 
applicable. E.g. a model for a robot is never exact, but can help to move the 
algorithm to a region where little further exploration is needed.

7. Suppose you have the task of getting a mine-detection system to plot a safe path 
through a minefield. The mines are reasonably easily detectable and you have a 
few small, relatively cheap (and therefore, to some extent, disposable) robots that 
you can use to aid you. Discuss how you might use reinforcement learning to find a 
safe path.

Explosion of a robot does not mean that all mines in that place are removed. 
Nevertheless, it can be assumed that there are less mines, e.g. a higher value for 
finding a safe path, such that it is a good idea to send more robot to this place. 
Costs are: Number of destroyed robots, length of path.

8. You find that in an RL problem discrete quantities is not accurate enough; instead, 
you use continuous quantities. How would you modify your learning system?
What is a feature vector and how may one be used in the representation of a state? 
Why would one choose to use a feature-vector representation of a state?

This is an outlook to the next lectures. Feature vectors can be defined continuously, 
and be adapted to a discrete algorithm e.g. by k-means clustering. Note that the 
clustering can be suboptimal after a bit of RL, such that several cycles may be 
needed.
More generally, instead of a look-up table function approximation can be used. 
Learning (of a value function, e.g.) means now to induce a compatibility of the 
function values at different positions (and their neighbouring positions) to the reward 
by an appropriately adapted delta-rule. A simple approach would be linear 
interpolation between states (consider a 1D example).


