Lecture 9: TD Control
Today’s Content

- Temporal Difference Learning – Control
 - Sarsa
 - Q-Learning
TD for *Control*: Learning Q-Values

Learn action values $Q^\pi(s, a)$ for the policy π

SARSA update rule:
$$\Delta Q_t(s_t, a_t) = \alpha[r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t)]$$
TD for Control: Learning Q-Values

- Choose a behaviour policy π and estimate the Q-values (Q^π) using the SARSA update rule. Change π towards greediness wrt Q^π.
- Use ϵ-greedy or ϵ-soft policies.
- Converges with probability 1 to optimal policy and Q-values if visit all state-action pairs infinitely many times and policy converges to greedy policy, e.g. by arranging for ϵ to tend towards 0.

Remember: learning optimal Q-values is useful since it tells us immediately which is(are) the optimal action(s) – they have the highest Q-value.
Algorithm: SARSA

- Initialise $Q(s, a)$

- Repeat many times
 - Pick s, a
 - Repeat each step to goal
 * Do a, observe r, s'
 * Choose a' based on $Q(s', a')$ ϵ-greedy
 * $Q(s, a) = Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$
 * $s = s'$, $a = a'$
 - Until s terminal (where $Q(s', a') = 0$)

Use with policy iteration, i.e. change policy each time to be greedy wrt current estimate of Q

Example: windy gridworld, S+B sect. 6.4
Windy Gridworld

undiscounted, episodic, reward = -1 until goal
Results of Sarsa on the Windy Gridworld
Q-Learning

SARSA is an example of on-policy learning. Why?

Q-LEARNING is an example of off-policy learning.

Update rule:

\[
\Delta Q_t(s_t, a_t) = \alpha [r_{t+1} + \gamma \max_a Q_t(s_{t+1}, a) - Q_t(s_t, a_t)]
\]

Always update using maximum Q value available from next state: then Q \(\Rightarrow\) Q*, optimal action-value function.
Algorithm: Q-Learning

- Initialise $Q(s, a)$

- Repeat many times
 - Pick s start state
 - Repeat each step to goal
 - Choose a based on $Q(s, a)$ ϵ-greedy
 - Do a, observe r, s'
 - $Q(s, a) = Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$
 - $s = s'$
 - Until s terminal
Backup Diagrams: SARSA and Q-Learning

SARSA backs up using the action a' actually chosen by the behaviour policy. Q-LEARNING backs up using the Q-value of the action a'^* that is the best next action, i.e. the one with the highest Q value, $Q(s', a'^*)$. The action actually chosen by the behaviour policy and followed is not necessarily a'^*.
Cliffwalking

ε-greedy, $\varepsilon = 0.1$

![Diagram of cliffwalking, showing safe path and optimal path with reward values $r = -1$ and $r = -100$ and ε-greedy learning with $\varepsilon = 0.1$.](image)

Graph:
- **Sarsa**
- **Q-learning**

Reward per episode vs. Episodes:
- The graph shows the reward per episode for Sarsa and Q-learning over multiple episodes.
- The y-axis represents the reward ranging from -100 to -25, and the x-axis represents the number of episodes from 0 to 500.
Q-Learning vs. SARSA

QL: $Q(s, a) = Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$ \hspace{1cm} off-policy

SARSA: $Q(s, a) = Q(s, a) + \alpha [r + \gamma Q(s', a') - Q(s, a)]$ \hspace{1cm} on-policy

In the cliff-walking task:
QL: learns optimal policy along edge
SARSA: learns a safe non-optimal policy away from edge

ϵ-greedy algorithm
For $\epsilon \neq 0$ **SARSA** performs better online. **Why?**
For $\epsilon \to 0$ gradually, both converge to optimal.
Summary

• Idea of Temporal Difference Prediction
• 1-step tabular model-free TD method
• Can extend to the GPI approach:
 – On-policy: SARSA
 – Off-policy: Q-learning
• TD methods bootstrap and sample, combining benefits of DP and MC methods
• Chapter 6 (6.4 to 6.5) of Sutton and Barto (1st Edition)