Reinforcement Learning (INF11010)

Lecture 7: Monte Carlo for RL

Pavlos Andreadis, February 9" 2018
with slides by Subramanian Ramamoorthy, 2017

where:
S is afinite set of states
A is afinite set of actions
P is a state transition probability function
R is areward function ,
-
. . A
”Y is a discount factor ""[gent)
state reward action
5. | Environment]*'l—

Methods Overview

* Dynamic Programming Methods:

— require a model
- bootstrap

e Monte Carlo Methods:

— do not require a model
— do not bootstrap

* Temporal-Difference Learning Methods:

— do not require a model
— bootstrap 3

Today's Content

Coursework 1 (questions/discussion)
Monte Carlo (MC) Policy Evaluation

- State-value and Action-value functions

MC Control
MC Exploring Starts

Problems with MC Assumptions

On-Policy MC Control

* Actions: * Episodic task
UP_LEFT — Top row (row 1) = terminal states
uUp * Transition Function:
UP_RIGHT

MDP_1.getTransitions

Reward Function:

MDP_1.getReward
Policy to evaluate:

pi_testl / pi_test]l stateNumbers
I A

| \ numbered
[row, column] " Jeft—right and

coordinates top->bottom

Monte Carlo Methods

* Learn value functions
* Discover optimal policies
* Do not assume knowledge of model as in DP, i.e., P:.,, RS,

ss’

* Learn from experience: Sample sequences of states, actions
and rewards (s, a, r)
— In simulated or real (e.g., physical robotic) worlds

— Clearly, simulator is a model but not a full one as in a prob.
distribution

* Eventually attain optimal behaviour (same as with DP)

27/01/2017 Reinforcement Learning 34

Backup in MC

Does the concept of backup diagram make sense for MC
methods?

As in figure, MC does not sample all transitions
— Root node to be updated as before
— Transitions are dictated by policy
— Acquire samples along a sample path
— Clear path from eventual reward to states
along the way (credit assignment easier)

Estimates are different states are independent I
terminal state

— Computational complexity not a function of state
dimensionality

27/01/2017

Pictorial: What does DP Do?

V(s) < E {1, +7 V(s,)}

Reinforcement Learning

36

Pictorial: What does Simple MC Do?

V(s,)< V(s) +a[R, - V(s,)]

where R is the actual return following state s, .

27/01/2017 Reinforcement Learning

37

Monte Carlo Policy Evaluation

e Goal: Approximate a value function V7 (s)

* Given: Some number of episodes under 7 which contain s

* Maintain average returns after visitstos .
— What is the effect of 77

(/ o) What 9"’ it is deterministic?
O—D—0——O
* First visit vs. Every visit MC:
— Consider a reward process R(t) =r; +vrie1 + ... and define the
first visit time, 7 = min{t|z = z;} and aset, 1 — [t|z = z;)
— First visit MC averages {R'(7)}.i=1,..,n
=1,...,nt; €l

whereas every visit MC averages over {R'(t;)}.i =

38

27/01/2017 Reinforcement Learning

First-visit Monte Carlo Policy Evaluation

Initialize:

m +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) < an empty list, for all s € S

Repeat forever:
(a) Generate an episode using 7
(b) For each state s appearing in the episode:

R « return following the first occurrence of s
Append R to Returns(s)
V(s) < average(Returns(s))

27/01/2017

Reinforcement Learning

39

]

0
©
@
]
@
2]
@
[
@
0
[¢]
@
&)
@
]

So, at every state, we know what actions
are available...

but we don’t know anything of where we
might transition, and with what
probability...

or what reward signals we might receive.

Given a policy, we compute the average
return starting from a state, across
episodes.

Obviously, the episodes need to
terminate.

Difference between first-time and any-time

visit MC here?

Monte Carlo Estimation of Action Values

* Modelis not available, so we do not know how states and
actions interact

— We want O°

* We can try to approximate O%(s,a) using Monte Carlo method
— Asymptotic convergence if every state-action pair is visited

* Explore many different starting state-action pairs: Equal
chance of starting from any given state

— Not entirely practical, but simple to understand

27/01/2017 Reinforcement Learning 45

Monte Carlo Control

e Policy Evaluation:
Monte Carlo method
* Policy Improvement: Tt

Greedify with respect to
state-value of action-value

function

27/01/2017 Reinforcement Learning

evaluation

m

T—>greedy(Q)

iImprovement

Q

46

Convergence of MC Control

* Policy improvement still works if evaluation is done with MC:
Q™ (s, mr41(8)) = (ka(S,ﬂfgInguc('”k(s,a))
max Q" (s,0)

Q‘ﬂ‘k(sa ”Tk(s))
V7T (s).

v

* T, 27 by the policy improvement theorem

* Assumption: exploring starts and infinite number of episodes
for MC policy evaluation (i.e., value function has stabilized)

* Things to do (asin DP):
— update only to given tolerance
— interleave evaluation/improvement

27/01/2017 Reinforcement Learning 47

Monte Carlo Exploring Starts

Initialize, for all s € S, a € A(s): Fixed point is optimal
Q(s,a) « arbitrary policy 7
7(s) «— arbitrary
Returns(s,a) «— empty list

Repeat forever:
(a) Generate an episode using exploring starts and
(b) For each pair s,a appearing in the episode:
R « return following the first occurrence of s,
Append R to Returns(s,a)
Q(s,a) «— average(Relurns(s,a))
(¢) For each s in the episode:;
7(s) « argmax, Q(s,a)

27/01/2017 Reinforcement Learning 48

Can We Avoid Thorny Assumptions?

 Two major MC assumptions (infinite sampling and exploring
all states) are unrealistic. How to circumvent the issue?

* Need to continually explore, €-soft policies:
— On-policy method: Explore in an e-greedy manner

— Off-policy method: Use a behaviour policy that is good at
exploring, then infer optimal policy from that

03/02/2017 Reinforcement Learning

On-Policy Monte Carlo Control

Overall idea is still that of Generalized Policy Iteration (move
towards greedy policy), but throw in continual exploration

In order to always explore, we want to keep policy e-soft:
m(s,a) > 0,7s,Va

Moreover, one may really wish to adopt an ¢-greedy policy:

€
m(s,a) = ——,if ais not the greedy choice

Al

: €
= 1 — e+ —,if ais the greedy choice

A

In this case, we have 7(s,a) > 7. 7s,Va

03/02/2017 Reinforcement Learning

The Policy Improvement Step

* Any e-greedy policy w.r.t. 0" is an improvement over any ¢-
soft policy &t (Policy Improvement Theorem)

Q(s,m'(s,0) = Y 7(5,0)Q7(s,0)
/ "o

¢ - greedy policy A()] Z Q" (s,a) + (1 —¢) max Q" (s,a)

€ m(s,a) — =
A 2) @) g 4,)

This is bounded above by,

= T 290 Gy 2 0 + 2 (5,097)
= V™(s)

Y

03/02/2017 Reinforcement Learning 5

On-Policy MC Control

Initialize, for all 5 € S, a € A(s):
Q(s,a) « arbitrary
Returns(s,a) « empty list
7« an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using
(b) For each pair s,u appearing in the episode:
R « return following the first occurrence of s,a @a[uate as Eefore
Append R to Returns(s,a)
Q(3s,a) + average(Returns(s,a))

{¢) For each s in the episode: ‘Jm}?rove towards
a* + arg max, Q(37 a) d‘ tﬁ
For all a € A(s): e-greedy, not tne max
. J 1-e+£/|A(s)| ifa=a
71'(3,(1) €/IA(S)| jfﬂ,#ﬂ*

03/02/2017 Reinforcement Learning 4

« Sections 5.1 to 5.4 of Sutton and Barto (1 Edition)
http://incompleteideas.net/book/ebook/the-book.html

Optional (will take you away from course material):

* Section 3.2 of Ng, A. et al. (2004)
Autonomous inverted helicopter flight via reinforcement learning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

