Reinforcement Learning (INF11010)

Lecture 7: Monte Carlo for RL

Pavlos Andreadis, February 9th 2018 with slides by Subramanian Ramamoorthy, 2017

Markov Decision Processes

- A finite Markov Decision Process (MDP) is a tuple (S, A, P, R, γ) where:
- S is a finite set of states
- A is a finite set of actions
- P is a state transition probability function
- R is a reward function
- γ is a discount factor

Methods Overview

- Dynamic Programming Methods:
 - require a model
 - bootstrap
- Monte Carlo Methods:
 - *do not* require a model
 - do not bootstrap
- Temporal-Difference Learning Methods:
 - *do not* require a model
 - bootstrap

Today's Content

- Coursework 1 (questions/discussion)
- Monte Carlo (MC) Policy Evaluation
 - State-value and Action-value functions
- MC Control
- MC Exploring Starts
- Problems with MC Assumptions
- On-Policy MC Control

Coursework 1

- Episodic task
 - Top row (row 1) = terminal states
 - Transition Function:

MDP_1.getTransitions

• Reward Function:

MDP_1.getReward

• Policy to evaluate:

Monte Carlo Methods

- Learn value functions
- Discover optimal policies
- Do not assume knowledge of model as in DP, i.e., $\mathcal{P}^a_{ss'}, \mathcal{R}^a_{ss'}$
- Learn from experience: Sample sequences of states, actions and rewards (*s*, *a*, *r*)
 - In simulated or real (e.g., physical robotic) worlds
 - Clearly, simulator <u>is</u> a model but not a *full* one as in a prob.
 distribution
- Eventually attain optimal behaviour (same as with DP)

Backup in MC

- Does the concept of backup diagram make sense for MC methods?
- As in figure, MC does not sample all transitions
 - Root node to be updated as before
 - Transitions are dictated by policy
 - Acquire samples along a sample path
 - Clear path from eventual reward to states along the way (credit assignment easier)
- Estimates are different states are independent
 - Computational complexity **not** a function of state dimensionality

Pictorial: What does DP Do?

Pictorial: What does Simple MC Do?

$$V(s_t) \leftarrow V(s_t) + \alpha \Big[R_t - V(s_t) \Big]$$

where R_t is the actual return following state s_t .

Monte Carlo Policy Evaluation

- <u>Goal</u>: Approximate a value function $V^{\pi}(s)$
- <u>Given</u>: Some number of episodes under π which contain s
- Maintain average returns after visits to *s*

What is the effect of π ? What if it is deterministic?

- First visit vs. Every visit MC:
 - Consider a reward process $R(t) = r_t + \gamma r_{t+1} + ...$ and define the first visit time, $\tau = \min\{t|x = x_i\}$ and a set, $\Gamma = \{t|x = x_i\}$

(5)

- First visit MC averages $\{R^i(\tau)\}, i = 1, ..., n$

whereas every visit MC averages over $\{R^i(t_j)\}, i = 1, ..., n, t_j \in \Gamma$

First-visit Monte Carlo Policy Evaluation

```
Initialize:
   \pi \leftarrow policy to be evaluated
   V \leftarrow an arbitrary state-value function
   Returns(s) \leftarrow an empty list, for all s \in S
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each state s appearing in the episode:
           R \leftarrow return following the first occurrence of s
           Append R to Returns(s)
           V(s) \leftarrow \operatorname{average}(Returns(s))
```

Example: Road Fighter

- So, at every state, we know what actions are available...
- but we don't know anything of where we might transition, and with what probability...
- or what reward signals we might receive.
- Given a policy, we compute the average return starting from a state, across episodes.
- Obviously, the episodes need to terminate.
- Difference between first-time and any-time visit MC here?

Monte Carlo Estimation of Action Values

- Model is not available, so we do not know how states and actions interact
 - We want Q^*
- We can try to approximate Q^π(s,a) using Monte Carlo method
 Asymptotic convergence if every state-action pair is visited
- Explore many different starting state-action pairs: Equal chance of starting from any given state
 - Not entirely practical, but simple to understand

Monte Carlo Control

- Policy Evaluation: Monte Carlo method
- Policy Improvement: Greedify with respect to state-value of action-value function

Convergence of MC Control

• Policy improvement still works if evaluation is done with MC:

$$Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \arg\max_a Q^{\pi_k}(s, a))$$

=
$$\max_a Q^{\pi_k}(s, a)$$

$$\geq Q^{\pi_k}(s, \pi_k(s))$$

=
$$V^{\pi_k}(s).$$

- $\pi_{k+1} \ge \pi_k$ by the policy improvement theorem
- Assumption: exploring starts and infinite number of episodes for MC policy evaluation (i.e., value function has stabilized)
- Things to do (as in DP):
 - update only to given tolerance
 - interleave evaluation/improvement

Monte Carlo Exploring Starts

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$

Fixed point is optimal policy π^*

Repeat forever:

(a) Generate an episode using exploring starts and π
(b) For each pair s, a appearing in the episode: R ← return following the first occurrence of s, a Append R to Returns(s, a) Q(s, a) ← average(Returns(s, a))
(c) For each s in the episode: π(s) ← arg max_a Q(s, a)

Can We Avoid Thorny Assumptions?

- Two major MC assumptions (infinite sampling and exploring all states) are unrealistic. How to circumvent the issue?
- Need to continually explore, ε-soft policies:
 - **On-policy** method: Explore in an ε -greedy manner
 - Off-policy method: Use a behaviour policy that is good at exploring, then infer optimal policy from that

On-Policy Monte Carlo Control

- Overall idea is still that of Generalized Policy Iteration (move *towards* greedy policy), but throw in continual exploration
- In order to always explore, we want to keep policy ε-soft:
 π(s, a) > 0, ∀s, ∀a
- Moreover, one may really wish to adopt an ε-greedy policy:

$$\pi(s, a) = \frac{\epsilon}{|\mathcal{A}|}, \text{ if } a \text{ is not the greedy choice}$$
$$= 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}|}, \text{ if } a \text{ is the greedy choice}$$

• In this case, we have $\pi(s,a) > \frac{\epsilon}{|\mathcal{A}|}, \forall s, \forall a$

The Policy Improvement Step

 Any ε-greedy policy w.r.t. Q^π is an improvement over any εsoft policy π (Policy Improvement Theorem)

$$Q^{\pi}(s, \pi'(s, a)) = \sum_{a} \pi'(s, a) Q^{\pi}(s, a)$$

$$\varepsilon \operatorname{-greedy policy} = \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) + (1 - \epsilon) \max_{a} Q^{\pi}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi(s, a) - \frac{\epsilon}{|\mathcal{A}(s)|}}{1 - \epsilon} Q^{\pi}(s, a)$$

This is bounded above by,

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) - \frac{\epsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) + \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

$$= V^{\pi}(s)$$

On-Policy MC Control

Reading +

 Sections 5.1 to 5.4 of Sutton and Barto (1st Edition) http://incompleteideas.net/book/ebook/the-book.html

<u>Optional</u> (will take you away from course material):

• Section 3.2 of Ng, A. et al. (2004) Autonomous inverted helicopter flight via reinforcement learning