Lecture 7: Monte Carlo for RL
A finite Markov Decision Process (MDP) is a tuple \((S, A, P, R, \gamma)\) where:

- \(S\) is a finite set of states
- \(A\) is a finite set of actions
- \(P\) is a state transition probability function
- \(R\) is a reward function
- \(\gamma\) is a discount factor
Methods Overview

- Dynamic Programming Methods:
 - *require a model*
 - *bootstrap*

- Monte Carlo Methods:
 - *do not* require a model
 - *do not* bootstrap

- Temporal-Difference Learning Methods:
 - *do not* require a model
 - *bootstrap*
Today’s Content

- Coursework 1 (questions/discussion)
- Monte Carlo (MC) Policy Evaluation
 - State-value and Action-value functions
- MC Control
- MC Exploring Starts
- Problems with MC Assumptions
- On-Policy MC Control
Coursework 1

- **Actions:**
 - UP_LEFT
 - UP
 - UP_RIGHT

- **Episodic task**
 - Top row (row 1) = terminal states

- **Transition Function:**
 - `MDP_1.getTransitions`

- **Reward Function:**
 - `MDP_1.getReward`

- **Policy to evaluate:**
 - `pi_test1 / pi_test1_stateNumbers`

[Row, column] coordinates numbered left→right and top→bottom
Monte Carlo Methods

- **Learn** value functions
- **Discover** optimal policies
- Do not assume knowledge of model as in DP, i.e., $P_{ss'}^a$, $R_{ss'}^a$

- Learn from experience: Sample sequences of states, actions and rewards (s, a, r)
 - In simulated or real (e.g., physical robotic) worlds
 - Clearly, simulator *is* a model but not a *full* one as in a prob. distribution

- Eventually attain optimal behaviour (same as with DP)
Backup in MC

- Does the concept of backup diagram make sense for MC methods?
- As in figure, MC does not sample all transitions
 - Root node to be updated as before
 - Transitions are dictated by policy
 - Acquire samples along a sample path
 - Clear path from eventual reward to states along the way (credit assignment easier)
- Estimates are different states are independent
 - Computational complexity **not** a function of state dimensionality
Pictorial: What does DP Do?

\[V(s_t) \leftarrow E_{\pi} \{ r_{t+1} + \gamma V(s_{t}) \} \]
Pictorial: What does Simple MC Do?

\[V(s_t) \leftarrow V(s_t) + \alpha [R_t - V(s_t)] \]

where \(R_t \) is the actual return following state \(s_t \).
Monte Carlo Policy Evaluation

- **Goal**: Approximate a value function $V^\pi(s)$
- **Given**: Some number of episodes under π which contain s
- Maintain average returns after visits to s

- **First visit vs. Every visit MC**:
 - Consider a reward process $R(t) = r_t + \gamma r_{t+1} + \ldots$ and define the first visit time, $\tau = \min\{t|x = x_i\}$ and a set, $\Gamma = \{t|x = x_i\}$
 - First visit MC averages $\{R^i(\tau)\}, i = 1, \ldots, n$
 - whereas every visit MC averages over $\{R^i(t_j)\}, i = 1, \ldots, n, t_j \in \Gamma$

What is the effect of π?
What if it is deterministic?
First-visit Monte Carlo Policy Evaluation

Initialize:

\[\pi \leftarrow \text{policy to be evaluated} \]
\[V \leftarrow \text{an arbitrary state-value function} \]
\[\text{Returns}(s) \leftarrow \text{an empty list, for all } s \in S \]

Repeat forever:

(a) Generate an episode using \(\pi \)
(b) For each state \(s \) appearing in the episode:
 \[R \leftarrow \text{return following the first occurrence of } s \]
 Append \(R \) to \(\text{Returns}(s) \)
 \[V(s) \leftarrow \text{average}(\text{Returns}(s)) \]
Example: Road Fighter

- So, at every state, we know what actions are available…
- but we don’t know anything of where we might transition, and with what probability…
- or what reward signals we might receive.
- Given a policy, we compute the average return starting from a state, across episodes.
- Obviously, the episodes need to terminate.
- Difference between first-time and any-time visit MC here?
Monte Carlo Estimation of Action Values

• Model is not available, so we do not know how states and actions interact
 – We want Q^*

• We can try to approximate $Q^\pi(s,a)$ using Monte Carlo method
 – Asymptotic convergence if every state-action pair is visited

• **Explore many different starting state-action pairs:** Equal chance of starting from any given state
 – Not entirely practical, but simple to understand
Monte Carlo Control

• **Policy Evaluation:**
 Monte Carlo method

• **Policy Improvement:**
 Greedify with respect to state-value of action-value function
Convergence of MC Control

• Policy improvement still works if evaluation is done with MC:

\[
Q^{\pi_k}(s, \pi_{k+1}(s)) = Q^{\pi_k}(s, \arg \max_a Q^{\pi_k}(s, a)) \\
= \max_a Q^{\pi_k}(s, a) \\
\geq Q^{\pi_k}(s, \pi_k(s)) \\
= V^{\pi_k}(s).
\]

• \(\pi_{k+1} \geq \pi_k\) by the policy improvement theorem

• Assumption: exploring starts and infinite number of episodes for MC policy evaluation (i.e., value function has stabilized)

• Things to do (as in DP):
 – update only to given tolerance
 – interleave evaluation/improvement
Monte Carlo Exploring Starts

Initialize, for all $s \in S$, $a \in A(s)$:
- $Q(s, a) \leftarrow$ arbitrary
- $\pi(s) \leftarrow$ arbitrary
- $\text{Returns}(s, a) \leftarrow$ empty list

Repeat forever:
(a) Generate an episode using exploring starts and π
(b) For each pair s, a appearing in the episode:
 - $R \leftarrow$ return following the first occurrence of s, a
 - Append R to $\text{Returns}(s, a)$
 - $Q(s, a) \leftarrow \text{average}(\text{Returns}(s, a))$
(c) For each s in the episode:
 - $\pi(s) \leftarrow \arg\max_a Q(s, a)$

Fixed point is optimal policy π^*
Can We Avoid Thorny Assumptions?

• Two major MC assumptions (infinite sampling and exploring all states) are unrealistic. How to circumvent the issue?

• Need to continually explore, ε-soft policies:

 – **On-policy** method: Explore in an ε-greedy manner

 – **Off-policy** method: Use a behaviour policy that is good at exploring, then infer optimal policy from that
On-Policy Monte Carlo Control

• Overall idea is still that of Generalized Policy Iteration (move \textit{towards} greedy policy), but throw in continual exploration

• In order to always explore, we want to keep policy \textit{\ensuremath{\boldsymbol{\varepsilon}}-soft}:

\[
\pi(s, a) > 0, \forall s, \forall a
\]

• Moreover, one may really wish to adopt an \textit{\ensuremath{\boldsymbol{\varepsilon}}-greedy} policy:

\[
\pi(s, a) = \frac{\varepsilon}{|A|}, \text{ if } a \text{ is not the greedy choice}
\]

\[
= 1 - \varepsilon + \frac{\varepsilon}{|A|}, \text{ if } a \text{ is the greedy choice}
\]

• In this case, we have \(\pi(s, a) > \frac{\varepsilon}{|A|}, \forall s, \forall a \)
The Policy Improvement Step

- Any ϵ-greedy policy w.r.t. Q^π is an improvement over any ϵ-soft policy π (Policy Improvement Theorem)

$$Q^\pi(s, \pi'(s, a)) = \sum_a \pi'(s, a)Q^\pi(s, a)$$

$$= \frac{\epsilon}{|A(s)|} \sum_a Q^\pi(s, a) + (1 - \epsilon) \max_a Q^\pi(s, a)$$

$$\geq \frac{\epsilon}{|A(s)|} \sum_a Q^\pi(s, a) + (1 - \epsilon) \sum_a \frac{\pi(s, a) - \frac{\epsilon}{|A(s)|}}{1 - \epsilon} Q^\pi(s, a)$$

This is bounded above by,

$$= \frac{\epsilon}{|A(s)|} \sum_a Q^\pi(s, a) - \frac{\epsilon}{|A(s)|} \sum_a Q^\pi(s, a) + \sum_a \pi(s, a)Q^\pi(s, a)$$

$$= V^\pi(s)$$
On-Policy MC Control

Initialize, for all $s \in S$, $a \in A(s)$:
- $Q(s, a) \leftarrow$ arbitrary
- $Returns(s, a) \leftarrow$ empty list
- $\pi \leftarrow$ an arbitrary ε-soft policy

Repeat forever:
(a) Generate an episode using π
(b) For each pair s, a appearing in the episode:
 - $R \leftarrow$ return following the first occurrence of s, a
 - Append R to $Returns(s, a)$
 - $Q(s, a) \leftarrow$ average($Returns(s, a)$)
(c) For each s in the episode:
 - $a^* \leftarrow \arg \max_a Q(s, a)$

For all $a \in A(s)$:
- $\pi(s, a) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|A(s)| & \text{if } a = a^* \\ \varepsilon/|A(s)| & \text{if } a \neq a^* \end{cases}$

Evaluates as before

Improve towards ε-greedy, not the max
Reading +

- Sections 5.1 to 5.4 of Sutton and Barto (1st Edition)

Optional (will take you away from course material):

- Section 3.2 of Ng, A. et al. (2004)
 Autonomous inverted helicopter flight via reinforcement learning