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Reinforcement Learning (INF11010)

Pavlos Andreadis, February 2nd 2018

Lecture 6: Dynamic Programming for 
Reinforcement Learning (extended)
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Markov Decision Processes

● A finite Markov Decision Process (MDP) is a tuple                             

where:

●       is a finite set of states

●       is a finite set of actions

●       is a state transition probability function

●       is a reward function

●       is a discount factor 
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Today’s and Friday’s Content

● Dynamic Programming (DP) solutions to the RL problem

● Policy Evaluation + Policy Improvement → 

Policy Iteration || Value Iteration

● Backup diagrams and the Bellman Equation

● Generalised Policy Iteration

● Asynchronous Dynamic Programming

● Dynamic Programming methods in relation to other approaches
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Dynamic Programming

● Algorithms for optimal policies given a perfect model of the 
environment as a Markov decision process (MDP)

● … but of theoretical importance.

● Applicable for exact solutions with discrete state & action 
model:

● … and provide approximate solutions for continuous problems.
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Bellman Optimality Equations
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Policy Evaluation

● There exists a unique solution as long as              or termination 
is guaranteed:

● … which is a system of |S| linear equations with |S| unknowns    
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Iterative Policy Evaluation

● An iterative solution, starting from an arbitrary            (but with 
terminal states having a value of 0) and computing…

● … which converges to           as

● At every iteration, every state is backed up

● For DP, this is a full backup, since we don’t sample next states 
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Backup Diagrams

● State value function
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Backup Diagrams
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● State value function
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Backup Diagrams
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Backup Diagrams

...

...
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...
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Backup Diagrams

...

...
● Action value function

...
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Policy Improvement

● Consider a given policy

– … can we improve it by changing the action taken at a 
specific state       ?

– … yes if

●  [Policy Improvement Theorem] Generally, for deterministic 
policies     ,      , if

then
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greedy Policy Improvement

● A policy improvement step would then be:

● Of course, this does not evaluate the value function for the new 
policy    , but if we put Policy Improvement and Policy 
Evaluation together, we get...
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Policy Iteration

1.  initialise        and         (arbitrarily)

2.  perform Policy Evaluation

3.  perform Policy Improvement

4.  if the policy has changed go to 2.
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Value Iteration

● … is like Policy Iteration but with only a single backup of 
each state in the Policy Evaluation step. 

● This still converges to an optimal policy.

● Policy Evaluation and Policy Improvement can be joined 
into a single update:

● Need only compute the policy in the end.
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Policy Iteration (concept)
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Generalised Policy Iteration
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Asynchronous DP

● So far, all solutions have considered full sweeps of the state space.

● An Asynchronous DP procedure performs evaluation & improvement 
computations ...

– without going through all the states or in any specific ordering

– with any state or state-action values currently available

● To converge correctly, it needs to visit all states in expectation.

● These are not necessarily faster, but  depending on the problem might help 
us improve convergence by e.g. avoiding states that do not appear in 
optimal trajectories.

● Examples:

– Value iteration with only one state updated per iteration.

– Real-time dynamic programming
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DP Efficiency

● Value Iteration for       (1 iteration) has complexity                       . 

● Value Iteration for       (1 iteration) has complexity                         .

● Policy Iteration…

– takes time polynomial in the problems size (state and action space)

– converges much slower the closer     is to 1

● 1 iteration of Policy Iteration is slower than 1 iteration of Value Iteration, but 
Policy Iteration will generally require fewer iterations till convergence. 
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DP in Comparison to Other Methods

● Dynamic Programming Methods:

– require a model

– bootstrap

● Monte Carlo Methods:

– do not require a model

– do not bootstrap

● Temporal-Difference Learning Methods:

– do not require a model

– bootstrap
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Reading +

● Chapter 4 of Sutton and Barto (1st Edition) 
http://incompleteideas.net/book/ebook/the-book.html

● Please join Piazza for announcements and support: 
https://piazza.com/ed.ac.uk/spring2018/infr11010

● Littman, M. L. and Dean, T. L. and Kaelbling, L. P. (1995) 
On the complexity of solving Markov decision problems.

● Pashenkova, E. and Rish, I. and Dechter, R. (1996) 
Value iteration and policy iteration algorithms for Markov decision problem.

Optional:

http://incompleteideas.net/book/ebook/the-book.html
https://piazza.com/ed.ac.uk/spring2018/infr11010
https://dl.acm.org/citation.cfm?id=2074203
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.9155&rep=rep1&type=pdf
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