Reinforcement Learning (INF11010)

#### Lecture 2: Introduction to Markov Decision Processes

Pavlos Andreadis, January 19<sup>th</sup> 2018

# Today's Content

- (discrete-time) finite Markov Decision Process (MDPs)
  - State space; Action space; Transition function; Reward function.
  - Policy; Value function.
- Markov property/assumption
- MDPs with set policy  $\rightarrow$  Markov chain
- The Reinforcement Learning problem:
  - Maximise the accumulation of rewards across time
- Modelling a problem as an MDP (example)

## a Repair Scenario

- Output in 1000s of \$:
  - Good: 5 No conveyor belt: 3 No production: 0
- Cost of repairs (regardless of condition) in 1000s of \$: 10



- Probability of engine fault  $p_e = 1/6$
- Probability of conveyor belt fault  $p_c = 2/6$

## State & Action spaces

$$S = \{s_0, s_1, s_2\}$$

- $\underline{s_0}$  No problems
- $\underline{s_1}$  Conveyor belt fault
- $\underline{s_2}$  Engine fault

$$\mathbf{A} = \{a_0, a_1\}$$

- <u>a\_0</u> wait
- $a_1$  repair
- the MDP model as a *Dynamic* Bayesian Network (i.e. a *dynamic* probabilistic directed acyclic graph):



## **Reward & Transition Functions**

• The Reward function:

$$R: S, A, S \to \mathbb{R} \qquad \qquad R^a_{s,s}$$

|                  | $a_0$ | $a_1$ |
|------------------|-------|-------|
| $\mathbf{S}_{0}$ | 5     | -5    |
| $\mathbf{s}_1$   | 3     | -7    |
| $s_2$            | 0     | -10   |

| The Transition function: |                |                               | $P: S, A, S \to [0, 1]$ |         |                | $P^a_{s,s'}$   |                |       |   |
|--------------------------|----------------|-------------------------------|-------------------------|---------|----------------|----------------|----------------|-------|---|
|                          | wait           | $\mathbf{S}_{0}$              | $\mathbf{S}_1$          | $S_2$   | repair         | $\mathbf{s}_0$ | $\mathbf{s}_1$ | $s_2$ |   |
|                          | $\mathbf{s}_0$ | $	ilde{p}_e \cdot 	ilde{p}_c$ | $\tilde{p}_e \cdot p_c$ | $p_e$   | $\mathbf{S}_0$ | 1              | 0              | 0     |   |
|                          | $\mathbf{S}_1$ | 0                             | $\widetilde{p}_{e}$     | $p_{e}$ | s <sub>1</sub> | 1              | 0              | 0     |   |
|                          | $s_2$          | 0                             | 0                       | 1       | $\mathbf{S}_2$ | 1              | 0              | 0     | 4 |

1

## Markov Property

• Environment response, Generally:

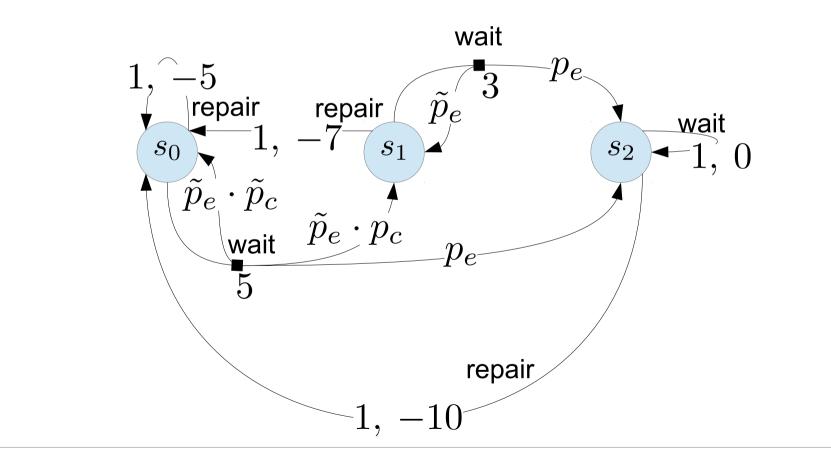
$$Pr\{s_{t+1} = s', r_{t+1} = r|s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0\}$$

• ... with the Markov property:

$$Pr\{s_{t+1} = s', r_{t+1} = r|s_t, a_t\}$$

## **Transition Graph**

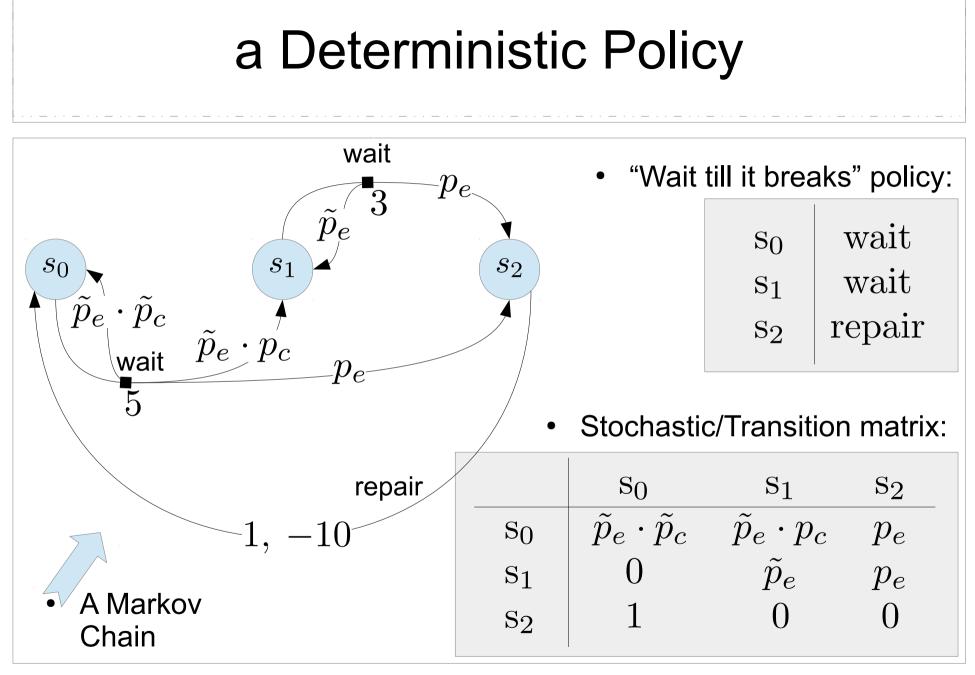
• the *Transition Graph* for our MDP model for the Repair Scenario:



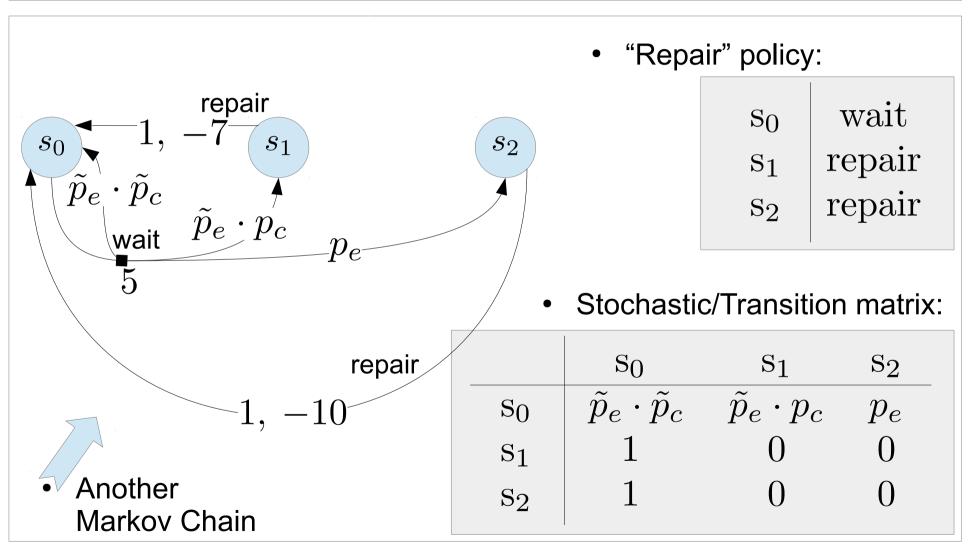
- A policy  $\pi$  is a mapping from each state  $\ s\in S$  and action  $\ a\in A$  to a probability  $\pi(s,a)$ 

• For example:

$$\begin{array}{c|c} & a_0 & a_1 \\ \hline s_0 & 0.6 & 0.4 \\ s_1 & 1 & 0 \\ s_2 & 0.3 & 0.7 \end{array}$$



## another Deterministic Policy



## Returns (finite time)

• Return at time t = the reward accumulated starting from the next time step:

$$R_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_T$$

- T = a final time step
- *Episodic* tasks, i.e. there is a final time step
- Each episode ends in a *terminal* (absorbing) state

- Assuming we are at time  $\,t\,$  our goal is to maximise the *expected* return at  $\,t\,$ 

## Returns (infinite time)

• *Discounted* Return at time t

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- $\gamma$  = discount rate  $~0\leq\gamma\leq1~$  (prevents a sum to infinity / weights reward across time)
- Continuing tasks, i.e. there is no final time step
- A single neverending episode
- Assuming we are at time  $t\,$  our goal is to maximise the expected discounted return at  $t\,$

## Returns (unified notation)

• *Discounted* Return at time t

$$R_t = \sum_{k=0}^T \gamma^k r_{t+k+1}$$

- Continuing tasks by setting  $\ T=\infty$
- In which case we can't have both  $\,T=\infty\,$  and  $\,\gamma=1$

#### OR

• Define *absorbing* states as transitioning to themselves with a reward of 0

### Value Function

• We can define the *value* of a state s under policy  $\pi$  using the *state-value function*:

$$V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\} = E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s\right\}$$

• ... or the *action-value* (or Q-) *function*:

$$Q^{\pi}(s,a) = E_{\pi} \{ R_t | s_t = s, a_t = a \}$$
$$= E_{\pi} \Big\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = t \Big\}$$

#### **Bellman Equation**

$$\mathcal{I}^{\pi}(s) = E_{\pi} \{ R_{t} | s_{t} = s \} 
= E_{\pi} \{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s \} 
= E_{\pi} \{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s \} 
= \sum_{a} \pi(s, a) \sum_{s'} P_{s,s'}^{a} \left[ R_{s,s'}^{a} + \gamma E_{\pi} \{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t+1} = s' \} \right]$$

$$= \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{s,s'} [R^{a}_{s,s'} + \gamma V_{\pi}(s')]$$

T

15

### **Optimal Value Function**

$$V^*(s) = \max_{\pi} V_{\pi}(s), \text{ for all } s \in S$$

$$Q^*(s,a) = \max_{\pi} Q_{\pi}(s,a), \text{ for all } s \in S \text{ and } a \in A$$

## Markov Decision Processes

- A finite Markov Decision Process (MDP) is a tuple  $(S, A, P, R, \gamma)$  where:
- S is a finite set of states
- A is a finite set of actions
- $P\,\,$  is a state transition probability function
- R is a reward function
- $\gamma$  is a discount factor

# Reading +

- Chapter 3 of Sutton and Barto (1<sup>st</sup> Edition) http://incompleteideas.net/book/ebook/the-book.html
- Please join Piazza for announcements and support: https://piazza.com/ed.ac.uk/spring2018/infr11010

#### <u>Optional:</u>

• *Excercise*: pick a policy for the Repair Scenario, and write a procedure in Matlab that evaluates the Expected Return from *s*<sub>0</sub>. (feel free to use Piazza to ask for tips)

